HemanM's picture
Update app.py
e3d2f2e verified
raw
history blame
7.06 kB
import os
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from transformers import AutoTokenizer, get_scheduler
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import io
from PIL import Image
import openai
import time
# βœ… Set OpenAI API key from secret
openai.api_key = os.getenv("OPENAI_API_KEY")
# βœ… Device setup
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# βœ… Load PIQA from public GitHub (JSONL)
dataset = {
"train": pd.read_json("https://raw.githubusercontent.com/epfml/Deep_Learning_Projects/master/PIQA/data/train.jsonl", lines=True),
"validation": pd.read_json("https://raw.githubusercontent.com/epfml/Deep_Learning_Projects/master/PIQA/data/valid.jsonl", lines=True)
}
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
# βœ… Tokenization helper
def tokenize_choices(example):
input_0 = tokenizer(example["goal"] + " " + example["sol1"], truncation=True, padding="max_length", max_length=128, return_tensors="pt")
input_1 = tokenizer(example["goal"] + " " + example["sol2"], truncation=True, padding="max_length", max_length=128, return_tensors="pt")
return {
"input_ids_0": input_0["input_ids"][0],
"input_ids_1": input_1["input_ids"][0],
"label": int(example["label"])
}
train_data = [tokenize_choices(row) for _, row in dataset["train"].head(500).iterrows()]
val_data = [tokenize_choices(row) for _, row in dataset["validation"].head(200).iterrows()]
# βœ… Dataset class
class PIQADataset(Dataset):
def __init__(self, data):
self.data = data
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return {
"input_ids_0": self.data[idx]["input_ids_0"],
"input_ids_1": self.data[idx]["input_ids_1"],
"label": torch.tensor(self.data[idx]["label"])
}
train_dataset = PIQADataset(train_data)
val_dataset = PIQADataset(val_data)
# βœ… EvoTransformer definition
class EvoTransformer(nn.Module):
def __init__(self):
super().__init__()
self.embedding = nn.Embedding(30522, 384)
encoder_layer = nn.TransformerEncoderLayer(d_model=384, nhead=6, dim_feedforward=1024, batch_first=True)
self.encoder = nn.TransformerEncoder(encoder_layer, num_layers=6)
self.classifier = nn.Sequential(
nn.Linear(384, 128),
nn.ReLU(),
nn.Linear(128, 1)
)
def forward(self, input_ids):
x = self.embedding(input_ids)
x = self.encoder(x)
return self.classifier(x[:, 0, :]).squeeze(-1)
# βœ… GPT-3.5 logic
def gpt35_answer(prompt):
try:
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": prompt}],
max_tokens=20,
temperature=0
)
return response['choices'][0]['message']['content'].strip()
except Exception as e:
return f"[Error: {e}]"
# βœ… Main train + compare function
def train_and_demo(few_shot_size):
start_time = time.time()
model = EvoTransformer().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.AdamW(model.parameters(), lr=5e-5)
loader = DataLoader(train_dataset[:few_shot_size], batch_size=8, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=32)
scheduler = get_scheduler("linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=3 * len(loader))
best_val = 0
accs = []
patience = 2
early_stop = 0
for epoch in range(3):
model.train()
for batch in loader:
optimizer.zero_grad()
x0 = batch["input_ids_0"].to(device)
x1 = batch["input_ids_1"].to(device)
labels = batch["label"].to(device)
l0 = model(x0)
l1 = model(x1)
logits = torch.stack([l0, l1], dim=1)
loss = criterion(logits, labels)
loss.backward()
optimizer.step()
scheduler.step()
model.eval()
correct = 0
with torch.no_grad():
for batch in val_loader:
x0 = batch["input_ids_0"].to(device)
x1 = batch["input_ids_1"].to(device)
labels = batch["label"].to(device)
l0 = model(x0)
l1 = model(x1)
logits = torch.stack([l0, l1], dim=1)
preds = torch.argmax(logits, dim=1)
correct += (preds == labels).sum().item()
acc = correct / len(val_dataset)
accs.append(acc)
if acc > best_val:
best_val = acc
early_stop = 0
else:
early_stop += 1
if early_stop >= patience:
break
# βœ… Accuracy plot
fig, ax = plt.subplots()
ax.plot(accs, marker='o')
ax.set_title(f"Validation Accuracy ({few_shot_size} examples)")
ax.set_xlabel("Epoch")
ax.set_ylabel("Accuracy")
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
img = Image.open(buf)
# βœ… Example comparison with GPT-3.5
output = ""
for i in range(2):
ex = dataset["validation"].iloc[i]
goal = ex["goal"]
sol1 = ex["sol1"]
sol2 = ex["sol2"]
x0 = tokenizer(goal + " " + sol1, return_tensors="pt", padding="max_length", max_length=128, truncation=True)["input_ids"].to(device)
x1 = tokenizer(goal + " " + sol2, return_tensors="pt", padding="max_length", max_length=128, truncation=True)["input_ids"].to(device)
l0 = model(x0)
l1 = model(x1)
pred_evo = 0 if l0 > l1 else 1
correct_evo = "βœ…" if pred_evo == ex["label"] else "❌"
gpt_prompt = f"Q: {goal}\nA) {sol1}\nB) {sol2}\nWhich is more appropriate? Answer with A or B only."
gpt_out = gpt35_answer(gpt_prompt)
pred_gpt = gpt_out[0].upper()
correct_gpt = "βœ…" if (pred_gpt == 'A' and ex["label"] == 0) or (pred_gpt == 'B' and ex["label"] == 1) else "❌"
output += f"Q: {goal}\nA) {sol1}\nB) {sol2}\n\nEvoTransformer: {'A' if pred_evo==0 else 'B'} {correct_evo}\nGPT-3.5: {pred_gpt} {correct_gpt}\n\n"
architecture_info = f"""
EvoTransformer v2.1 Configuration:
- Embedding Dim: 384
- Transformer Layers: 6
- Attention Heads: 6
- Feedforward Size: 1024
- Parameters: ~13M
- Training Time: {time.time() - start_time:.2f}s
"""
return img, f"Best Accuracy: {best_val:.4f}", output.strip() + "\n\n" + architecture_info.strip()
# βœ… Gradio app
gr.Interface(
fn=train_and_demo,
inputs=gr.Slider(10, 300, step=10, value=50, label="Training Samples"),
outputs=[
gr.Image(label="Accuracy Plot"),
gr.Textbox(label="Best Accuracy"),
gr.Textbox(label="Evo vs GPT-3.5 Output")
],
title="🧬 EvoTransformer v2.1 Benchmark",
description="Train EvoTransformer on PIQA and compare predictions against GPT-3.5."
).launch()