Spaces:
Running
Running
from transformers import AutoTokenizer | |
from evo_model import EvoTransformerForClassification | |
import torch | |
# Load tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") | |
model = EvoTransformerForClassification.from_pretrained("trained_model") | |
model.eval() | |
def generate_response(goal, sol1, sol2): | |
input_text = f"Goal: {goal}\nOption A: {sol1}\nOption B: {sol2}" | |
# Tokenize input | |
inputs = tokenizer( | |
input_text, | |
return_tensors="pt", | |
padding=True, | |
truncation=True, | |
) | |
# ✅ Filter out unwanted keys (e.g., token_type_ids) | |
filtered_inputs = { | |
k: v for k, v in inputs.items() | |
if k in ["input_ids", "attention_mask"] | |
} | |
# Predict | |
with torch.no_grad(): | |
outputs = model(**filtered_inputs) | |
logits = outputs.logits | |
predicted_class = torch.argmax(logits, dim=1).item() | |
return "A" if predicted_class == 0 else "B" | |