Spaces:
Running
Running
Update evo_model.py
Browse files- evo_model.py +8 -53
evo_model.py
CHANGED
@@ -1,9 +1,7 @@
|
|
1 |
import torch
|
2 |
from torch import nn
|
3 |
-
from transformers import PreTrainedModel, PretrainedConfig
|
4 |
from model import EvoTransformer # assumes your core model is in model.py
|
5 |
-
from torch.utils.data import DataLoader, Dataset
|
6 |
-
import torch.optim as optim
|
7 |
|
8 |
class EvoTransformerConfig(PretrainedConfig):
|
9 |
model_type = "evo-transformer"
|
@@ -36,64 +34,21 @@ class EvoTransformerForClassification(PreTrainedModel):
|
|
36 |
dim_feedforward=config.dim_feedforward,
|
37 |
num_layers=config.num_hidden_layers
|
38 |
)
|
39 |
-
self.classifier = nn.Linear(config.d_model, 2)
|
40 |
|
41 |
-
def forward(self, input_ids
|
42 |
-
|
43 |
-
pooled =
|
44 |
-
logits = self.classifier(pooled)
|
45 |
return logits
|
46 |
|
47 |
def save_pretrained(self, save_directory):
|
48 |
-
torch.save(self.state_dict(), f"{save_directory}/pytorch_model.bin")
|
49 |
self.config.save_pretrained(save_directory)
|
50 |
|
51 |
@classmethod
|
52 |
def from_pretrained(cls, load_directory):
|
53 |
config = EvoTransformerConfig.from_pretrained(load_directory)
|
54 |
model = cls(config)
|
55 |
-
model.load_state_dict(torch.load(f"{load_directory}/pytorch_model.bin"))
|
56 |
return model
|
57 |
-
|
58 |
-
# ✅ Add this retraining logic
|
59 |
-
def train_evo_transformer(df, epochs=1):
|
60 |
-
class EvoDataset(Dataset):
|
61 |
-
def __init__(self, dataframe, tokenizer):
|
62 |
-
self.df = dataframe
|
63 |
-
self.tokenizer = tokenizer
|
64 |
-
|
65 |
-
def __len__(self):
|
66 |
-
return len(self.df)
|
67 |
-
|
68 |
-
def __getitem__(self, idx):
|
69 |
-
row = self.df.iloc[idx]
|
70 |
-
text = f"{row['goal']} [SEP] {row['sol1']} [SEP] {row['sol2']}"
|
71 |
-
encoding = self.tokenizer(text, truncation=True, padding='max_length', max_length=64, return_tensors='pt')
|
72 |
-
input_ids = encoding['input_ids'].squeeze(0)
|
73 |
-
attention_mask = encoding['attention_mask'].squeeze(0)
|
74 |
-
label = torch.tensor(0 if row['correct'] == 'Solution 1' else 1)
|
75 |
-
return input_ids, attention_mask, label
|
76 |
-
|
77 |
-
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
78 |
-
config = EvoTransformerConfig()
|
79 |
-
model = EvoTransformerForClassification(config)
|
80 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
81 |
-
model.to(device)
|
82 |
-
model.train()
|
83 |
-
|
84 |
-
dataset = EvoDataset(df, tokenizer)
|
85 |
-
loader = DataLoader(dataset, batch_size=8, shuffle=True)
|
86 |
-
optimizer = optim.Adam(model.parameters(), lr=2e-5)
|
87 |
-
criterion = nn.CrossEntropyLoss()
|
88 |
-
|
89 |
-
for epoch in range(epochs):
|
90 |
-
for input_ids, attention_mask, labels in loader:
|
91 |
-
input_ids, attention_mask, labels = input_ids.to(device), attention_mask.to(device), labels.to(device)
|
92 |
-
logits = model(input_ids, attention_mask)
|
93 |
-
loss = criterion(logits, labels)
|
94 |
-
optimizer.zero_grad()
|
95 |
-
loss.backward()
|
96 |
-
optimizer.step()
|
97 |
-
|
98 |
-
torch.save(model.state_dict(), "trained_model.pt")
|
99 |
-
return True
|
|
|
1 |
import torch
|
2 |
from torch import nn
|
3 |
+
from transformers import PreTrainedModel, PretrainedConfig
|
4 |
from model import EvoTransformer # assumes your core model is in model.py
|
|
|
|
|
5 |
|
6 |
class EvoTransformerConfig(PretrainedConfig):
|
7 |
model_type = "evo-transformer"
|
|
|
34 |
dim_feedforward=config.dim_feedforward,
|
35 |
num_layers=config.num_hidden_layers
|
36 |
)
|
37 |
+
self.classifier = nn.Linear(config.d_model, 2) # 2-way classification
|
38 |
|
39 |
+
def forward(self, input_ids):
|
40 |
+
hidden = self.model(input_ids) # (batch_size, seq_len, d_model)
|
41 |
+
pooled = hidden[:, 0, :] # Use the first token as a summary
|
42 |
+
logits = self.classifier(pooled) # (batch_size, 2)
|
43 |
return logits
|
44 |
|
45 |
def save_pretrained(self, save_directory):
|
46 |
+
torch.save(self.model.state_dict(), f"{save_directory}/pytorch_model.bin")
|
47 |
self.config.save_pretrained(save_directory)
|
48 |
|
49 |
@classmethod
|
50 |
def from_pretrained(cls, load_directory):
|
51 |
config = EvoTransformerConfig.from_pretrained(load_directory)
|
52 |
model = cls(config)
|
53 |
+
model.model.load_state_dict(torch.load(f"{load_directory}/pytorch_model.bin"))
|
54 |
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|