Spaces:
Running
Running
Update watchdog.py
Browse files- watchdog.py +62 -45
watchdog.py
CHANGED
@@ -1,71 +1,88 @@
|
|
1 |
# watchdog.py
|
2 |
|
3 |
-
import torch
|
4 |
-
from evo_model import EvoTransformerForClassification, EvoTransformerConfig
|
5 |
-
from transformers import BertTokenizer
|
6 |
import firebase_admin
|
7 |
from firebase_admin import credentials, firestore
|
8 |
-
import
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
13 |
|
14 |
-
#
|
15 |
if not firebase_admin._apps:
|
16 |
cred = credentials.Certificate("firebase_key.json")
|
17 |
firebase_admin.initialize_app(cred)
|
18 |
|
19 |
db = firestore.client()
|
|
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
def manual_retrain():
|
22 |
try:
|
23 |
-
#
|
24 |
docs = db.collection("evo_feedback_logs").stream()
|
25 |
-
|
26 |
-
for doc in docs:
|
27 |
-
d = doc.to_dict()
|
28 |
-
if all(k in d for k in ["goal", "solution_1", "solution_2", "correct_answer"]):
|
29 |
-
label = 0 if d["correct_answer"] == "Solution 1" else 1
|
30 |
-
combined = f"{d['goal']} [SEP] {d['solution_1']} [SEP] {d['solution_2']}"
|
31 |
-
data.append((combined, label))
|
32 |
|
33 |
-
if
|
34 |
-
print("
|
35 |
return False
|
36 |
|
37 |
-
#
|
38 |
-
|
39 |
-
|
40 |
|
41 |
-
#
|
42 |
-
config =
|
43 |
-
|
44 |
-
|
45 |
-
"nhead": 4,
|
46 |
-
"dim_feedforward": 512,
|
47 |
-
"num_hidden_layers": 4
|
48 |
-
}
|
49 |
-
model_config = EvoTransformerConfig(**config)
|
50 |
-
model = EvoTransformerForClassification(model_config)
|
51 |
|
52 |
-
#
|
53 |
-
|
54 |
-
|
55 |
|
56 |
-
#
|
57 |
-
model.train()
|
58 |
for epoch in range(3):
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
-
#
|
67 |
torch.save(model.state_dict(), "trained_model.pt")
|
68 |
-
print("β
Evo updated
|
69 |
return True
|
70 |
|
71 |
except Exception as e:
|
|
|
1 |
# watchdog.py
|
2 |
|
|
|
|
|
|
|
3 |
import firebase_admin
|
4 |
from firebase_admin import credentials, firestore
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.optim as optim
|
8 |
+
from transformers import BertTokenizer
|
9 |
+
from torch.utils.data import DataLoader, Dataset
|
10 |
+
from evo_model import EvoTransformerForClassification, EvoTransformerConfig
|
11 |
|
12 |
+
# Initialize Firebase
|
13 |
if not firebase_admin._apps:
|
14 |
cred = credentials.Certificate("firebase_key.json")
|
15 |
firebase_admin.initialize_app(cred)
|
16 |
|
17 |
db = firestore.client()
|
18 |
+
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
19 |
|
20 |
+
# Dataset for training
|
21 |
+
class FeedbackDataset(Dataset):
|
22 |
+
def __init__(self, records, tokenizer, max_length=64):
|
23 |
+
self.records = records
|
24 |
+
self.tokenizer = tokenizer
|
25 |
+
self.max_length = max_length
|
26 |
+
self.label_map = {"Solution 1": 0, "Solution 2": 1}
|
27 |
+
|
28 |
+
def __len__(self):
|
29 |
+
return len(self.records)
|
30 |
+
|
31 |
+
def __getitem__(self, idx):
|
32 |
+
row = self.records[idx]
|
33 |
+
combined = f"Goal: {row['goal']} Option 1: {row['solution_1']} Option 2: {row['solution_2']}"
|
34 |
+
inputs = self.tokenizer(combined, padding="max_length", truncation=True,
|
35 |
+
max_length=self.max_length, return_tensors="pt")
|
36 |
+
label = self.label_map[row["correct_answer"]]
|
37 |
+
return {
|
38 |
+
"input_ids": inputs["input_ids"].squeeze(0),
|
39 |
+
"attention_mask": inputs["attention_mask"].squeeze(0),
|
40 |
+
"labels": torch.tensor(label)
|
41 |
+
}
|
42 |
+
|
43 |
+
# Manual retrain trigger
|
44 |
def manual_retrain():
|
45 |
try:
|
46 |
+
# Step 1: Fetch feedback data from Firestore
|
47 |
docs = db.collection("evo_feedback_logs").stream()
|
48 |
+
feedback_data = [doc.to_dict() for doc in docs if "goal" in doc.to_dict()]
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
if len(feedback_data) < 5:
|
51 |
+
print("[Retrain Skipped] Not enough feedback.")
|
52 |
return False
|
53 |
|
54 |
+
# Step 2: Load tokenizer and dataset
|
55 |
+
dataset = FeedbackDataset(feedback_data, tokenizer)
|
56 |
+
loader = DataLoader(dataset, batch_size=4, shuffle=True)
|
57 |
|
58 |
+
# Step 3: Load model
|
59 |
+
config = EvoTransformerConfig()
|
60 |
+
model = EvoTransformerForClassification(config)
|
61 |
+
model.train()
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+
# Step 4: Define optimizer and loss
|
64 |
+
optimizer = optim.Adam(model.parameters(), lr=2e-5)
|
65 |
+
loss_fn = nn.CrossEntropyLoss()
|
66 |
|
67 |
+
# Step 5: Train
|
|
|
68 |
for epoch in range(3):
|
69 |
+
total_loss = 0
|
70 |
+
for batch in loader:
|
71 |
+
optimizer.zero_grad()
|
72 |
+
input_ids = batch["input_ids"]
|
73 |
+
attention_mask = batch["attention_mask"]
|
74 |
+
labels = batch["labels"]
|
75 |
+
|
76 |
+
logits = model(input_ids)
|
77 |
+
loss = loss_fn(logits, labels)
|
78 |
+
loss.backward()
|
79 |
+
optimizer.step()
|
80 |
+
total_loss += loss.item()
|
81 |
+
print(f"[Retrain] Epoch {epoch + 1} Loss: {total_loss:.4f}")
|
82 |
|
83 |
+
# Step 6: Save updated model
|
84 |
torch.save(model.state_dict(), "trained_model.pt")
|
85 |
+
print("β
Evo updated with latest feedback.")
|
86 |
return True
|
87 |
|
88 |
except Exception as e:
|