Spaces:
Sleeping
Sleeping
""" | |
evo_plugin_example.py | |
Step 8: Example text generator plugin (for immediate testing). | |
(Objective) | |
- Provides the same interface your real Evo plugin will expose. | |
- Uses a tiny HF model (distilgpt2) so you can test generative mode now. | |
- Replace this later with `evo_plugin.py` wrapping your EvoDecoder/Evo QA. | |
Real Evo instructions: | |
- Create a file `evo_plugin.py` with a `load_model()` that returns an object | |
exposing `generate(prompt: str, max_new_tokens: int, temperature: float) -> str`. | |
- The app will auto-prefer `evo_plugin.py` if it exists. | |
""" | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
class _HFGenerator: | |
def __init__(self, model_name: str = "distilgpt2"): | |
self.device = torch.device("cpu") | |
self.tok = AutoTokenizer.from_pretrained(model_name) | |
self.model = AutoModelForCausalLM.from_pretrained(model_name).to(self.device) | |
# GPT-2 models have no pad token; set to eos to avoid warnings | |
if self.tok.pad_token_id is None and self.tok.eos_token_id is not None: | |
self.tok.pad_token_id = self.tok.eos_token_id | |
def generate(self, prompt: str, max_new_tokens: int = 200, temperature: float = 0.4) -> str: | |
inputs = self.tok(prompt, return_tensors="pt").to(self.device) | |
out = self.model.generate( | |
**inputs, | |
max_new_tokens=int(max_new_tokens), | |
do_sample=temperature > 0.0, | |
temperature=float(max(0.01, temperature)), | |
top_p=0.95, | |
pad_token_id=self.tok.pad_token_id, | |
) | |
text = self.tok.decode(out[0], skip_special_tokens=True) | |
# Return only the completion after the prompt to reduce echo | |
return text[len(prompt):].strip() | |
def load_model(): | |
""" | |
(Objective) Entry-point used by evo_inference.py. | |
""" | |
return _HFGenerator() | |