Spaces:
Sleeping
Sleeping
""" | |
evo_inference.py — FLAN-optimized + anti-echo | |
- FLAN-friendly prompt with explicit bullet structure | |
- Filters placeholder chunks | |
- Cleans prompt-echo lines | |
- Anti-echo guard: if the model repeats the question or outputs too little, we fall back to Extractive | |
- Labeled outputs: [Generative] / [Extractive] | |
""" | |
from typing import List, Dict | |
import re | |
from utils_lang import L, normalize_lang | |
# Try to load your real Evo plugin first; else use the example; else None. | |
_GENERATOR = None | |
try: | |
from evo_plugin import load_model as _load_real | |
_GENERATOR = _load_real() | |
except Exception: | |
try: | |
from evo_plugin_example import load_model as _load_example | |
_GENERATOR = _load_example() | |
except Exception: | |
_GENERATOR = None | |
MAX_SNIPPET_CHARS = 400 | |
def _snippet(text: str) -> str: | |
text = " ".join(text.split()) | |
return text[:MAX_SNIPPET_CHARS] + ("..." if len(text) > MAX_SNIPPET_CHARS else "") | |
def _extractive_answer(user_query: str, lang: str, hits: List[Dict]) -> str: | |
if not hits: | |
return "**[Extractive]**\n\n" + L(lang, "intro_err") | |
bullets = [f"- {_snippet(h['text'])}" for h in hits[:4]] | |
steps = { | |
"en": [ | |
"• Step 1: Check eligibility & gather required documents.", | |
"• Step 2: Confirm fees & payment options.", | |
"• Step 3: Apply online or at the indicated office.", | |
"• Step 4: Keep reference/receipt; track processing time.", | |
], | |
"fr": [ | |
"• Étape 1 : Vérifiez l’éligibilité et rassemblez les documents requis.", | |
"• Étape 2 : Confirmez les frais et les moyens de paiement.", | |
"• Étape 3 : Déposez la demande en ligne ou au bureau indiqué.", | |
"• Étape 4 : Conservez le reçu/la référence et suivez le délai de traitement.", | |
], | |
"mfe": [ | |
"• Step 1: Get dokiman neseser ek verifie si to elegib.", | |
"• Step 2: Konfirm fre ek manyer peyman.", | |
"• Step 3: Fer demand online ouswa dan biro ki indike.", | |
"• Step 4: Gard referans/reso; swiv letan tretman.", | |
], | |
}[normalize_lang(lang)] | |
return ( | |
"**[Extractive]**\n\n" | |
f"**{L(lang, 'intro_ok')}**\n\n" | |
f"**Q:** {user_query}\n\n" | |
f"**Key information:**\n" + "\n".join(bullets) + "\n\n" | |
f"**Suggested steps:**\n" + "\n".join(steps) | |
) | |
def _lang_name(code: str) -> str: | |
return {"en": "English", "fr": "French", "mfe": "Kreol Morisien"}.get(code, "English") | |
def _filter_hits(hits: List[Dict], keep: int = 6) -> List[Dict]: | |
# Prefer non-placeholder chunks; if all are placeholders, return originals. | |
filtered = [h for h in hits if "placeholder" not in h["text"].lower() and "disclaimer" not in h["text"].lower()] | |
if not filtered: | |
filtered = hits | |
return filtered[:keep] | |
def _build_grounded_prompt(question: str, lang: str, hits: List[Dict]) -> str: | |
""" | |
FLAN-style prompt: | |
Instruction: (clear constraints) | |
Context: 1) ... 2) ... | |
Question: ... | |
Answer: - bullet - bullet ... | |
""" | |
lang = normalize_lang(lang) | |
lang_readable = _lang_name(lang) | |
if lang == "fr": | |
instruction = ( | |
"Tu es le Copilote Gouvernemental de Maurice. Réponds UNIQUEMENT à partir du contexte. " | |
"Ne répète pas la question. Donne 6–10 puces courtes couvrant: Documents requis, Frais, " | |
"Où postuler, Délai de traitement, Étapes. Si une info manque, dis-le. Pas d'autres sections." | |
) | |
elif lang == "mfe": | |
instruction = ( | |
"To enn Copilot Gouv Moris. Reponn zis lor konteks. Pa repete kestyon. Donn 6–10 pwin kout " | |
"lor: Dokiman, Fre, Kot pou al, Letan tretman, Steps. Si info manke, dir li. Pa azout seksion anplis." | |
) | |
else: | |
instruction = ( | |
"You are the Mauritius Government Copilot. Use ONLY the context. Do not repeat the question. " | |
"Write 6–10 short bullet points covering: Required documents, Fees, Where to apply, " | |
"Processing time, and Steps. If something is missing, say so. No extra sections." | |
) | |
chosen = _filter_hits(hits, keep=6) | |
ctx_lines = [f"{i+1}) {_snippet(h['text'])}" for i, h in enumerate(chosen)] | |
ctx_block = "\n".join(ctx_lines) if ctx_lines else "(none)" | |
# Prime with a leading dash to encourage bullets. | |
prompt = ( | |
f"Instruction ({lang_readable}): {instruction}\n\n" | |
f"Context:\n{ctx_block}\n\n" | |
f"Question: {question}\n\n" | |
f"Answer ({lang_readable}):\n- " | |
) | |
return prompt | |
_ECHO_PATTERNS = [ | |
r"^\s*Instruction.*$", r"^\s*Context:.*$", r"^\s*Question:.*$", r"^\s*Answer.*$", | |
r"^\s*\[Instructions?\].*$", r"^\s*Be concise.*$", r"^\s*Do not invent.*$", | |
r"^\s*(en|fr|mfe)\s*$", | |
] | |
def _clean_generated(text: str) -> str: | |
# Remove common echoed lines from the model output. | |
lines = [ln.strip() for ln in text.strip().splitlines()] | |
out = [] | |
for ln in lines: | |
if any(re.match(pat, ln, flags=re.IGNORECASE) for pat in _ECHO_PATTERNS): | |
continue | |
out.append(ln) | |
cleaned = "\n".join(out).strip() | |
cleaned = re.sub(r"\n{3,}", "\n\n", cleaned) | |
return cleaned | |
def _is_echo_or_too_short(ans: str, question: str) -> bool: | |
# Normalize and check if answer is basically the question or too short. | |
a = re.sub(r"\W+", " ", (ans or "").lower()).strip() | |
q = re.sub(r"\W+", " ", (question or "").lower()).strip() | |
if len(a) < 40: | |
return True | |
if q and (a.startswith(q) or q in a[: max(80, len(q) + 10)]): | |
return True | |
return False | |
def synthesize_with_evo( | |
user_query: str, | |
lang: str, | |
hits: List[Dict], | |
mode: str = "extractive", | |
max_new_tokens: int = 192, | |
temperature: float = 0.4, | |
) -> str: | |
# No context → safe fallback | |
lang = normalize_lang(lang) | |
if not hits: | |
return _extractive_answer(user_query, lang, hits) | |
# Extractive path or no generator available | |
if mode != "generative" or _GENERATOR is None: | |
return _extractive_answer(user_query, lang, hits) | |
prompt = _build_grounded_prompt(user_query, lang, hits) | |
try: | |
text = _GENERATOR.generate( | |
prompt, | |
max_new_tokens=int(max_new_tokens), | |
temperature=float(temperature), | |
) | |
text = _clean_generated(text) | |
if _is_echo_or_too_short(text, user_query): | |
return _extractive_answer(user_query, lang, hits) | |
return "**[Generative]**\n\n" + text | |
except Exception: | |
return _extractive_answer(user_query, lang, hits) | |