Spaces:
Runtime error
Runtime error
File size: 1,393 Bytes
54e8483 4c23181 75e09ad 54e8483 4c23181 54e8483 4c23181 9b65c50 75e09ad 4c23181 3fd655b 2a369c5 3fd655b 2a369c5 4c23181 b503163 3b69718 75e09ad fd893e6 4c23181 b503163 5db5fa6 4c23181 fd893e6 4c23181 75e09ad 3b69718 2a369c5 4c23181 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
from datasets import load_dataset
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("hrshtsharma2012/NL2SQL-Picard-final")
model = AutoModelForSeq2SeqLM.from_pretrained("hrshtsharma2012/NL2SQL-Picard-final")
# Initialize the pipeline
nl2sql_pipeline = pipeline("text2text-generation", model=model, tokenizer=tokenizer)
# Load a part of the Spider dataset
spider_dataset = load_dataset("spider", split='train[:5]')
def generate_sql(query):
# Format the input for the model
input_text = f"translate English to SQL: {query}"
# Run the pipeline
results = nl2sql_pipeline(input_text)
# Extract the SQL query
sql_query = results[0]['generated_text']
return sql_query
# Use examples from the Spider dataset
example_questions = [(question['question'],) for question in spider_dataset]
# Create a Gradio interface
interface = gr.Interface(
fn=generate_sql,
inputs=gr.Textbox(lines=2, placeholder="Enter your natural language query here..."),
outputs="text",
examples=example_questions,
title="NL to SQL with Picard",
description="This model converts natural language queries into SQL using the Spider dataset. Try one of the example questions or enter your own!"
)
# Launch the app
if __name__ == "__main__":
interface.launch()
|