NLSQL / app.py
HusnaManakkot's picture
Update app.py
b8ee71c verified
raw
history blame
1.61 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from datasets import load_dataset
# Load the Spider dataset
spider_dataset = load_dataset("spider", split='train[:1000]')
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL")
model = AutoModelForSeq2SeqLM.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL")
def generate_sql_from_dataset(index):
# Ensure the index is within the range of the dataset
index = int(index) # Convert to integer in case it's passed as a string
if index < 0 or index >= len(spider_dataset):
return "Invalid index. Please enter a number between 0 and {}.".format(len(spider_dataset) - 1), ""
# Get the natural language query from the dataset
query = spider_dataset[index]['question']
input_text = "translate English to SQL: " + query
inputs = tokenizer(input_text, return_tensors="pt", padding=True)
outputs = model.generate(**inputs, max_length=512)
sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True)
return query, sql_query
# Create a Gradio interface
interface = gr.Interface(
fn=generate_sql_from_dataset,
inputs=gr.Number(label="Dataset Index (0-4)"),
outputs=[gr.Textbox(label="Natural Language Query"), gr.Textbox(label="Generated SQL Query")],
title="NL to SQL with T5 using Spider Dataset",
description="This model converts natural language queries from the Spider dataset into SQL. Enter the index of the dataset entry (0-4)!"
)
# Launch the app
if __name__ == "__main__":
interface.launch()