HusnaManakkot commited on
Commit
bdb1e5f
Β·
verified Β·
1 Parent(s): 05d92f8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -13
app.py CHANGED
@@ -1,31 +1,24 @@
1
  import gradio as gr
2
  from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
3
- from datasets import load_dataset
4
 
5
  # Load tokenizer and model
6
- tokenizer = AutoTokenizer.from_pretrained("hrshtsharma2012/NL2SQL-Picard-final")
7
- model = AutoModelForSeq2SeqLM.from_pretrained("hrshtsharma2012/NL2SQL-Picard-final")
8
-
9
- # Load a part of the Spider dataset
10
- spider_dataset = load_dataset("spider", split='train[:5]')
11
 
12
  def generate_sql(query):
13
- inputs = tokenizer(query, return_tensors="pt", padding=True)
 
14
  outputs = model.generate(**inputs, max_length=512)
15
  sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True)
16
  return sql_query
17
 
18
- # Use examples from the Spider dataset
19
- example_questions = [(question['question'],) for question in spider_dataset]
20
-
21
  # Create a Gradio interface
22
  interface = gr.Interface(
23
  fn=generate_sql,
24
  inputs=gr.Textbox(lines=2, placeholder="Enter your natural language query here..."),
25
  outputs="text",
26
- examples=example_questions,
27
- title="NL to SQL with Picard",
28
- description="This model converts natural language queries into SQL using the Spider dataset. Try one of the example questions or enter your own!"
29
  )
30
 
31
  # Launch the app
 
1
  import gradio as gr
2
  from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
 
3
 
4
  # Load tokenizer and model
5
+ tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL")
6
+ model = AutoModelForSeq2SeqLM.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL")
 
 
 
7
 
8
  def generate_sql(query):
9
+ input_text = "translate English to SQL: " + query
10
+ inputs = tokenizer(input_text, return_tensors="pt", padding=True)
11
  outputs = model.generate(**inputs, max_length=512)
12
  sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True)
13
  return sql_query
14
 
 
 
 
15
  # Create a Gradio interface
16
  interface = gr.Interface(
17
  fn=generate_sql,
18
  inputs=gr.Textbox(lines=2, placeholder="Enter your natural language query here..."),
19
  outputs="text",
20
+ title="NL to SQL with T5",
21
+ description="This model converts natural language queries into SQL. Enter your query!"
 
22
  )
23
 
24
  # Launch the app