Spaces:
Runtime error
Runtime error
File size: 4,421 Bytes
5cb6b47 237f3b8 d31d2c2 237f3b8 d31d2c2 237f3b8 d31d2c2 5cb6b47 d31d2c2 5cb6b47 a005cbe 5cb6b47 b2a700f 5cb6b47 d31d2c2 b2a700f 5cb6b47 d31d2c2 42260f8 237f3b8 f3fc9b1 d31d2c2 83d4418 7bba854 d31d2c2 64b1361 d31d2c2 83d4418 7bba854 1925f84 7bba854 b2a700f 26a8665 0c11816 64b1361 3f2c2fd b2a700f 7bba854 64b1361 d31d2c2 64b1361 d31d2c2 5cb6b47 237f3b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
import streamlit as st
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_groq import ChatGroq
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains.question_answering import load_qa_chain
from langchain.prompts import PromptTemplate
import tempfile
from gtts import gTTS
import os
def text_to_speech(text):
tts = gTTS(text=text, lang='en')
audio_file = tempfile.NamedTemporaryFile(suffix=".mp3", delete=False)
temp_filename = audio_file.name
tts.save(temp_filename)
st.audio(temp_filename, format='audio/mp3')
os.remove(temp_filename)
def get_pdf_text(pdf_docs):
text = ""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
return text
def get_text_chunks(text):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
chunks = text_splitter.split_text(text)
return chunks
def get_vector_store(text_chunks, api_key):
embeddings = HuggingFaceInferenceAPIEmbeddings(api_key=api_key, model_name="sentence-transformers/all-MiniLM-l6-v2")
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
vector_store.save_local("faiss_index")
def get_conversational_chain():
prompt_template = """
Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n
Context:\n {context}?\n
Question: \n{question}\n
Answer:
"""
model = ChatGroq(temperature=0, groq_api_key=os.environ["groq_api_key"], model_name="llama3-8b-8192")
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
return chain
def user_input(user_question, api_key):
st.spinner("Processing...")
embeddings = HuggingFaceInferenceAPIEmbeddings(api_key=api_key, model_name="sentence-transformers/all-MiniLM-l6-v2")
new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
docs = new_db.similarity_search(user_question)
chain = get_conversational_chain()
response = chain({"input_documents": docs, "question": user_question}, return_only_outputs=True)
st.success("Processing Complete")
st.write("Replies:")
if isinstance(response["output_text"], str):
response_list = [response["output_text"]]
else:
response_list = response["output_text"]
for text in response_list:
st.write(text)
# Convert text to speech for each response
text_to_speech(text)
def main():
st.set_page_config(layout="wide")
st.header("Chat with DOCS")
st.markdown("<h1 style='font-size:20px;'>ChatBot by Muhammad Huzaifa</h1>", unsafe_allow_html=True)
api_key = st.secrets["inference_api_key"]
# Sidebar column for file upload
with st.sidebar:
st.header("Chat with PDF")
pdf_docs = st.file_uploader("Upload your PDF Files", accept_multiple_files=True, type=["pdf"])
# Main column for displaying extracted text and user interaction
col1, col2 = st.columns([1, 2])
# Initialize raw_text as None initially
raw_text = None
if pdf_docs and col1.button("Submit"):
with col1:
st.spinner("Processing...")
raw_text = get_pdf_text(pdf_docs)
text_chunks = get_text_chunks(raw_text)
get_vector_store(text_chunks, api_key)
st.success("Processing Complete")
if pdf_docs and st.success("Processing Complete"):
with col1:
user_question = st.text_input("Ask a question from the Docs")
if user_question:
user_input(user_question, api_key)
raw_text = get_pdf_text(pdf_docs)
else:
with col1:
st.write("Please upload a document first to ask questions.")
# Display extracted text and handle user interaction if raw_text is not None
if raw_text is not None:
with col2:
st.subheader("Extracted Text from PDF:")
st.text(raw_text)
if __name__ == "__main__":
main()
|