Spaces:
Running
Running
File size: 11,345 Bytes
b09e573 c914404 66c8ea4 b09e573 66c8ea4 c914404 b09e573 c914404 b09e573 c914404 b09e573 c914404 b09e573 c914404 b09e573 c914404 b09e573 c914404 b09e573 c914404 b09e573 c914404 b09e573 c914404 b09e573 c914404 b09e573 c914404 b09e573 c914404 b09e573 c914404 b09e573 c914404 b09e573 c914404 b09e573 c914404 b09e573 c914404 b09e573 c914404 b09e573 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
from spandrel import ModelLoader
import torch
from pathlib import Path
import gradio as App
import logging
import spaces
import time
import cv2
import os
from gradio import themes
from rich.console import Console
from rich.logging import RichHandler
from Scripts.SAD import GetDifferenceRectangles
# ============================== #
# Core Settings #
# ============================== #
Theme = themes.Citrus(
primary_hue='blue',
secondary_hue='blue',
radius_size=themes.sizes.radius_xxl
).set(
link_text_color='blue'
)
ModelDir = Path('./Models')
TempDir = Path('./Temp')
os.environ['GRADIO_TEMP_DIR'] = str(TempDir)
ModelFileType = '.pth'
# ============================== #
# Logging #
# ============================== #
logging.basicConfig(
level=logging.INFO,
format='%(message)s',
datefmt='[%X]',
handlers=[RichHandler(
console=Console(),
rich_tracebacks=True,
omit_repeated_times=False,
markup=True,
show_path=False,
)],
)
Logger = logging.getLogger('Video2x')
logging.getLogger('httpx').setLevel(logging.WARNING)
# ============================== #
# Device Configuration #
# ============================== #
@spaces.GPU
def GetDeviceName():
Device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
Logger.info(f'π§ͺ Using device: {str(Device).upper()}')
return Device
Device = GetDeviceName()
# ============================== #
# Utility Functions #
# ============================== #
def HumanizeSeconds(Seconds):
Hours = int(Seconds // 3600)
Minutes = int((Seconds % 3600) // 60)
Seconds = int(Seconds % 60)
if Hours > 0:
return f'{Hours}h {Minutes}m {Seconds}s'
elif Minutes > 0:
return f'{Minutes}m {Seconds}s'
else:
return f'{Seconds}s'
def HumanizedBytes(Size):
Units = ['B', 'KB', 'MB', 'GB', 'TB']
Index = 0
while Size >= 1024 and Index < len(Units) - 1:
Size /= 1024.0
Index += 1
return f'{Size:.2f} {Units[Index]}'
# ============================== #
# Main Processing Logic #
# ============================== #
@spaces.GPU
class Upscaler:
def __init__(self):
pass
def ListModels(self):
Models = sorted(
[File.name for File in ModelDir.glob('*' + ModelFileType) if File.is_file()]
)
Logger.info(f'π Found {len(Models)} Models In Directory')
return Models
def LoadModel(self, ModelName):
torch.cuda.empty_cache()
Model = (
ModelLoader()
.load_from_file(ModelDir / (ModelName + ModelFileType))
.to(Device)
.eval()
)
Logger.info(f'π€ Loaded Model {ModelName} Onto {str(Device).upper()}')
return Model
def UnloadModel(self):
if Device.type == 'cuda':
torch.cuda.empty_cache()
Logger.info('π€ Model Unloaded Successfully')
def CleanUp(self):
self.UnloadModel()
Logger.info('π§Ή Temporary Files Cleaned Up')
def Process(self, InputVideo, InputModel, InputUseRegions, InputThreshold, InputMinPercentage, InputMaxRectangles, InputPadding, Progress=App.Progress()):
if not InputVideo:
Logger.warning('β No Video Provided')
App.Warning('β No Video Provided')
return None, None
Progress(0, desc='βοΈ Loading Model')
Model = self.LoadModel(InputModel)
Logger.info(f'πΌ Processing Video: {Path(InputVideo).name}')
Progress(0, desc='πΌ Processing Video')
Video = cv2.VideoCapture(InputVideo)
FrameRate = Video.get(cv2.CAP_PROP_FPS)
FrameCount = int(Video.get(cv2.CAP_PROP_FRAME_COUNT))
Width = int(Video.get(cv2.CAP_PROP_FRAME_WIDTH))
Height = int(Video.get(cv2.CAP_PROP_FRAME_HEIGHT))
Logger.info(f'π Video Properties: {FrameCount} Frames, {FrameRate} FPS, {Width}x{Height}')
PerFrameProgress = 1 / FrameCount
FrameProgress = 0.0
StartTime = time.time()
Times = []
while True:
Ret, Frame = Video.read()
if not Ret:
break
FrameRgb = cv2.cvtColor(Frame, cv2.COLOR_BGR2RGB)
FrameForTorch = FrameRgb.transpose(2, 0, 1)
FrameForTorch = torch.from_numpy(FrameForTorch).unsqueeze(0).to(Device).float() / 255.0
RetNext, NextFrame = Video.read()
if not RetNext:
NextFrame = Frame
DiffResult = GetDifferenceRectangles(
Frame,
NextFrame,
Threshold=InputThreshold,
Rows=12,
Columns=20,
Padding=InputPadding
)
SimilarityPercentage = DiffResult['SimilarPercentage']
Rectangles = DiffResult['Rectangles']
if SimilarityPercentage > InputMinPercentage and len(Rectangles) < InputMaxRectangles and InputUseRegions:
Logger.info(f'π© Frame {int(Video.get(cv2.CAP_PROP_POS_FRAMES))}: {SimilarityPercentage:.2f}% Similar, {len(Rectangles)} Regions To Upscale')
Cols = DiffResult['Columns']
Rows = DiffResult['Rows']
FrameHeight, FrameWidth = Frame.shape[:2]
SegmentWidth = FrameWidth // Cols
SegmentHeight = FrameHeight // Rows
for X, Y, W, H in Rectangles:
X1 = X * SegmentWidth
Y1 = Y * SegmentHeight
X2 = FrameWidth if X + W == Cols else X1 + W * SegmentWidth
Y2 = FrameHeight if Y + H == Rows else Y1 + H * SegmentHeight
Region = Frame[Y1:Y2, X1:X2]
RegionRgb = cv2.cvtColor(Region, cv2.COLOR_BGR2RGB)
RegionTorch = torch.from_numpy(RegionRgb.transpose(2, 0, 1)).unsqueeze(0).to(Device).float() / 255.0
UpscaledRegion = Model(RegionTorch)[0].cpu().numpy().transpose(1, 2, 0) * 255.0 # type: ignore
UpscaledRegion = cv2.cvtColor(UpscaledRegion.astype('uint8'), cv2.COLOR_RGB2BGR)
RegionHeight, RegionWidth = Region.shape[:2]
UpscaledRegion = cv2.resize(UpscaledRegion, (RegionWidth, RegionHeight), interpolation=cv2.INTER_CUBIC)
Frame[Y1:Y2, X1:X2] = UpscaledRegion
OutputFrame = Frame
else:
Logger.info(f'π₯ Frame {int(Video.get(cv2.CAP_PROP_POS_FRAMES))}: {SimilarityPercentage:.2f}% Similar, Upscaling Full Frame')
OutputFrame = Model(FrameForTorch)[0].cpu().numpy().transpose(1, 2, 0) * 255.0 # type: ignore
OutputFrame = cv2.cvtColor(OutputFrame.astype('uint8'), cv2.COLOR_RGB2BGR)
OutputFrame = cv2.resize(OutputFrame, (Width, Height), interpolation=cv2.INTER_CUBIC)
CurrentFrameNumber = int(Video.get(cv2.CAP_PROP_POS_FRAMES))
if Times:
AverageTime = sum(Times) / len(Times)
Eta = HumanizeSeconds((FrameCount - CurrentFrameNumber) * AverageTime)
else:
Eta = None
Progress(FrameProgress, desc=f'π¦ Processed Frame {len(Times)+1}/{FrameCount} - {Eta}')
Logger.info(f'π¦ Processed Frame {len(Times)+1}/{FrameCount} - {Eta}')
cv2.imwrite(f'{TempDir}/Upscaled_Frame_{CurrentFrameNumber:05d}.png', OutputFrame)
DeltaTime = time.time() - StartTime
Times.append(DeltaTime)
StartTime = time.time()
FrameProgress += PerFrameProgress
Progress(1, desc='π¦ Cleaning Up')
self.CleanUp()
return InputVideo, InputVideo
# ============================== #
# Streamlined UI #
# ============================== #
with App.Blocks(
title='Video Upscaler', theme=Theme, delete_cache=(-1, 1800)
) as Interface:
App.Markdown('# ποΈ Video Upscaler')
App.Markdown('''
Space created by [Hyphonical](https://huggingface.co/Hyphonical), this space uses several models from [styler00dollar/VSGAN-tensorrt-docker](https://github.com/styler00dollar/VSGAN-tensorrt-docker/releases/tag/models)
You may always request adding more models by opening a [new discussion](https://huggingface.co/spaces/Hyphonical/Video2x/discussions/new). The main program uses spandrel to load the models and ffmpeg to process the video.
You may run out of time using the ZeroGPU, you could clone the space or run it locally for better performance.
''')
with App.Row():
with App.Column():
with App.Group():
with App.Accordion(label='π Instructions', open=False):
App.Markdown('''
### How To Use The Video Upscaler
1. **Upload A Video:** Begin by uploading your video file using the 'Input Video' section.
2. **Select A Model:** Choose an appropriate upscaling model from the 'Select Model' dropdown menu.
3. **Adjust Settings (Optional):**
Modify the 'Frame Rate' slider if you want to change the output video's frame rate.
Adjust the 'Tile Grid Size' for memory optimization. Larger models might require a higher grid size, but processing could be slower.
4. **Start Processing:** Click the 'π Upscale Video' button to begin the upscaling process.
5. **Download The Result:** Once the process is complete, download the upscaled video using the 'πΎ Download Video' button.
> Tip: If you get a CUDA out of memory error, try increasing the Tile Grid Size. This will split the image into smaller tiles for processing, which can help reduce memory usage.
''')
InputVideo = App.Video(
label='Input Video', sources=['upload'], height=300
)
ModelList = Upscaler().ListModels()
ModelNames = [Path(Model).stem for Model in ModelList]
InputModel = App.Dropdown(
choices=ModelNames,
label='Select Model',
value=ModelNames[0],
)
with App.Accordion(label='βοΈ Advanced Settings', open=False):
with App.Group():
InputUseRegions = App.Checkbox(
label='Use Regions',
value=False,
info='Use regions to upscale only the different parts of the video (β‘οΈ Experimental, Faster)',
interactive=True
)
InputThreshold = App.Slider(
label='Threshold',
value=5,
minimum=0,
maximum=20,
step=0.5,
info='Threshold for the SAD algorithm to detect different regions',
interactive=False
)
InputPadding = App.Slider(
label='Padding',
value=1,
minimum=0,
maximum=5,
step=1,
info='Extra padding to include neighboring pixels in the SAD algorithm',
interactive=False
)
InputMinPercentage = App.Slider(
label='Min Percentage',
value=70,
minimum=0,
maximum=100,
step=1,
info='Minimum percentage of similarity to consider upscaling the full frame',
interactive=False
)
InputMaxRectangles = App.Slider(
label='Max Rectangles',
value=8,
minimum=1,
maximum=10,
step=1,
info='Maximum number of rectangles to consider upscaling the full frame',
interactive=False
)
SubmitButton = App.Button('π Upscale Video')
with App.Column(show_progress=True):
with App.Group():
OutputVideo = App.Video(
label='Output Video', height=300, interactive=False, format=None
)
OutputDownload = App.DownloadButton(
label='πΎ Download Video', interactive=False
)
def ToggleRegionInputs(UseRegions):
return (
App.update(interactive=UseRegions),
App.update(interactive=UseRegions),
App.update(interactive=UseRegions),
App.update(interactive=UseRegions),
)
InputUseRegions.change(
fn=ToggleRegionInputs,
inputs=[InputUseRegions],
outputs=[InputThreshold, InputMinPercentage, InputMaxRectangles, InputPadding],
)
SubmitButton.click(
fn=Upscaler().Process,
inputs=[
InputVideo,
InputModel,
InputUseRegions,
InputThreshold,
InputMinPercentage,
InputMaxRectangles,
InputPadding
],
outputs=[OutputVideo, OutputDownload],
)
if __name__ == '__main__':
os.makedirs(ModelDir, exist_ok=True)
os.makedirs(TempDir, exist_ok=True)
Logger.info('π Starting Video Upscaler')
Interface.launch(pwa=True) |