Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,184 Bytes
b09e573 c914404 66c8ea4 b09e573 66c8ea4 c914404 cc5a426 c914404 b09e573 c914404 b09e573 c914404 b09e573 c914404 1d3bf88 b09e573 c914404 b09e573 c914404 b09e573 c914404 b09e573 c914404 b09e573 c914404 b09e573 c914404 b09e573 c914404 b09e573 c914404 b09e573 c914404 b09e573 c914404 1d3bf88 cc5a426 c914404 1d3bf88 5a7f927 1d3bf88 c914404 1d3bf88 c914404 5a7f927 cc5a426 5a7f927 c914404 cc5a426 1d3bf88 c914404 1d3bf88 5a7f927 c914404 1d3bf88 c914404 1d3bf88 c914404 1d3bf88 c914404 1d3bf88 c914404 b09e573 c914404 1d3bf88 c914404 1d3bf88 b09e573 1d3bf88 b09e573 c914404 b09e573 c914404 263de18 c914404 1d3bf88 cc5a426 1d3bf88 c914404 5a7f927 c914404 1d3bf88 c914404 1d3bf88 c914404 5a7f927 c914404 5a7f927 c914404 1d3bf88 5a7f927 1d3bf88 5a7f927 1d3bf88 5a7f927 1d3bf88 5a7f927 1d3bf88 5a7f927 1d3bf88 cc5a426 b09e573 c914404 1d3bf88 cc5a426 1d3bf88 c914404 cc5a426 c914404 263de18 c914404 1d3bf88 cc5a426 c914404 b09e573 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 |
from spandrel import ModelLoader
import torch
from pathlib import Path
import gradio as App
import logging
import spaces
import time
import cv2
import os
from gradio import themes
from rich.console import Console
from rich.logging import RichHandler
from Scripts.SAD import GetDifferenceRectangles
from Scripts.ORB import DetectMotionWithOrb
# ============================== #
# Core Settings #
# ============================== #
Theme = themes.Citrus(
primary_hue='blue',
secondary_hue='blue',
radius_size=themes.sizes.radius_xxl
).set(
link_text_color='blue'
)
ModelDir = Path('./Models')
TempDir = Path('./Temp')
os.environ['GRADIO_TEMP_DIR'] = str(TempDir)
ModelFileType = '.pth'
# ============================== #
# Logging #
# ============================== #
logging.basicConfig(
level=logging.INFO,
format='%(message)s',
datefmt='[%X]',
handlers=[RichHandler(
console=Console(),
rich_tracebacks=True,
omit_repeated_times=False,
markup=True,
show_path=False,
)],
)
Logger = logging.getLogger('Zero2x')
logging.getLogger('httpx').setLevel(logging.WARNING)
# ============================== #
# Device Configuration #
# ============================== #
@spaces.GPU
def GetDeviceName():
Device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
Logger.info(f'π§ͺ Using device: {str(Device).upper()}')
return Device
Device = GetDeviceName()
# ============================== #
# Utility Functions #
# ============================== #
def HumanizeSeconds(Seconds):
Hours = int(Seconds // 3600)
Minutes = int((Seconds % 3600) // 60)
Seconds = int(Seconds % 60)
if Hours > 0:
return f'{Hours}h {Minutes}m {Seconds}s'
elif Minutes > 0:
return f'{Minutes}m {Seconds}s'
else:
return f'{Seconds}s'
def HumanizedBytes(Size):
Units = ['B', 'KB', 'MB', 'GB', 'TB']
Index = 0
while Size >= 1024 and Index < len(Units) - 1:
Size /= 1024.0
Index += 1
return f'{Size:.2f} {Units[Index]}'
# ============================== #
# Main Processing Logic #
# ============================== #
class Upscaler:
def __init__(self):
pass
def ListModels(self):
Models = sorted(
[File.name for File in ModelDir.glob('*' + ModelFileType) if File.is_file()]
)
Logger.info(f'π Found {len(Models)} Models In Directory')
return Models
def LoadModel(self, ModelName):
torch.cuda.empty_cache()
Model = (
ModelLoader()
.load_from_file(ModelDir / (ModelName + ModelFileType))
.to(Device)
.eval()
)
Logger.info(f'π€ Loaded Model {ModelName} Onto {str(Device).upper()}')
return Model
def UnloadModel(self):
if Device.type == 'cuda':
torch.cuda.empty_cache()
Logger.info('π€ Model Unloaded Successfully')
def CleanUp(self):
self.UnloadModel()
Logger.info('π§Ή Temporary Files Cleaned Up')
@spaces.GPU
def UpscaleFullFrame(self, Model, Frame):
FrameRgb = cv2.cvtColor(Frame, cv2.COLOR_BGR2RGB)
FrameForTorch = FrameRgb.transpose(2, 0, 1)
FrameForTorch = torch.from_numpy(FrameForTorch).unsqueeze(0).to(Device).float() / 255.0
OutputFrame = Model(FrameForTorch)[0].cpu().numpy().transpose(1, 2, 0) * 255.0
OutputFrame = cv2.cvtColor(OutputFrame.astype('uint8'), cv2.COLOR_RGB2BGR)
return OutputFrame
@spaces.GPU
def UpscaleRegions(self, Model, Frame, PrevFrame, UpscaledPrevFrame, InputThreshold, InputMinPercentage, InputMaxRectangles, InputPadding, InputSegmentRows, InputSegmentColumns):
DiffResult = GetDifferenceRectangles(
PrevFrame,
Frame,
Threshold=InputThreshold,
Rows=InputSegmentRows,
Columns=InputSegmentColumns,
Padding=InputPadding
)
SimilarityPercentage = DiffResult['SimilarPercentage']
Rectangles = DiffResult['Rectangles']
Cols = DiffResult['Columns']
Rows = DiffResult['Rows']
FrameHeight, FrameWidth = Frame.shape[:2]
SegmentWidth = FrameWidth // Cols
SegmentHeight = FrameHeight // Rows
UseRegions = False
RegionLog = 'π₯'
if SimilarityPercentage > InputMinPercentage and len(Rectangles) < InputMaxRectangles:
UpscaleFactorY = UpscaledPrevFrame.shape[0] // FrameHeight
UpscaleFactorX = UpscaledPrevFrame.shape[1] // FrameWidth
OutputFrame = UpscaledPrevFrame.copy()
for X, Y, W, H in Rectangles:
X1 = X * SegmentWidth
Y1 = Y * SegmentHeight
X2 = FrameWidth if X + W == Cols else X1 + W * SegmentWidth
Y2 = FrameHeight if Y + H == Rows else Y1 + H * SegmentHeight
Region = Frame[Y1:Y2, X1:X2]
RegionRgb = cv2.cvtColor(Region, cv2.COLOR_BGR2RGB)
RegionTorch = torch.from_numpy(RegionRgb.transpose(2, 0, 1)).unsqueeze(0).to(Device).float() / 255.0
UpscaledRegion = Model(RegionTorch)[0].cpu().numpy().transpose(1, 2, 0) * 255.0
UpscaledRegion = cv2.cvtColor(UpscaledRegion.astype('uint8'), cv2.COLOR_RGB2BGR)
RegionHeight, RegionWidth = Region.shape[:2]
UpscaledRegion = cv2.resize(UpscaledRegion, (RegionWidth * UpscaleFactorX, RegionHeight * UpscaleFactorY), interpolation=cv2.INTER_CUBIC)
UX1 = X1 * UpscaleFactorX
UY1 = Y1 * UpscaleFactorY
UX2 = UX1 + UpscaledRegion.shape[1]
UY2 = UY1 + UpscaledRegion.shape[0]
OutputFrame[UY1:UY2, UX1:UX2] = UpscaledRegion
RegionLog = 'π©'
UseRegions = True
else:
OutputFrame = self.UpscaleFullFrame(Model, Frame)
return OutputFrame, SimilarityPercentage, Rectangles, RegionLog, UseRegions
@spaces.GPU
def Process(self, InputVideo, InputModel, InputUseRegions, InputThreshold, InputMinPercentage, InputMaxRectangles, InputPadding, InputSegmentRows, InputSegmentColumns, InputFullFrameInterval, InputMotionThreshold, Progress=App.Progress()):
if not InputVideo:
Logger.warning('β No Video Provided')
App.Warning('β No Video Provided')
return None, None
Progress(0, desc='βοΈ Loading Model')
Model = self.LoadModel(InputModel)
Logger.info(f'πΌ Processing Video: {Path(InputVideo).name}')
Progress(0, desc='πΌ Processing Video')
Video = cv2.VideoCapture(InputVideo)
FrameRate = Video.get(cv2.CAP_PROP_FPS)
FrameCount = int(Video.get(cv2.CAP_PROP_FRAME_COUNT))
Width = int(Video.get(cv2.CAP_PROP_FRAME_WIDTH))
Height = int(Video.get(cv2.CAP_PROP_FRAME_HEIGHT))
Logger.info(f'π Video Properties: {FrameCount} Frames, {FrameRate} FPS, {Width}x{Height}')
PerFrameProgress = 1 / FrameCount
FrameProgress = 0.0
StartTime = time.time()
Times = []
CurrentFrameIndex = 0
PrevFrame = None
UpscaledPrevFrame = None
PartialUpscaleCount = 0
while True:
Ret, Frame = Video.read()
if not Ret:
break
CurrentFrameIndex += 1
ForceFull = False
CopyPrevUpscaled = False
if CurrentFrameIndex == 1 or not InputUseRegions:
ForceFull = True
PartialUpscaleCount = 0
elif PartialUpscaleCount >= InputFullFrameInterval:
ForceFull = True
PartialUpscaleCount = 0
if PrevFrame is not None:
IsMotion, TotalMagnitude, DirectionAngle = DetectMotionWithOrb(PrevFrame, Frame, InputMotionThreshold)
if IsMotion:
ForceFull = True
PartialUpscaleCount = 0
Logger.info(f'π¨ Frame {CurrentFrameIndex}: Motion Detected - Upscaling Full Frame')
if not ForceFull and PrevFrame is not None and UpscaledPrevFrame is not None:
DiffResult = GetDifferenceRectangles(
PrevFrame,
Frame,
Threshold=InputThreshold,
Rows=InputSegmentRows,
Columns=InputSegmentColumns,
Padding=InputPadding
)
SimilarityPercentage = DiffResult['SimilarPercentage']
if SimilarityPercentage == 100:
OutputFrame = UpscaledPrevFrame.copy()
RegionLog = 'π¦'
UseRegions = False
Rectangles = []
Logger.info(f'{RegionLog} Frame {CurrentFrameIndex}: 100% Similar - Copied Previous Upscaled Frame')
FrameProgress += PerFrameProgress
Progress(FrameProgress, desc=f'π¦ Processed Frame {CurrentFrameIndex}/{FrameCount}')
cv2.imwrite(f'{TempDir}/Upscaled_Frame_{CurrentFrameIndex:05d}.png', OutputFrame)
PrevFrame = Frame.copy()
UpscaledPrevFrame = OutputFrame.copy()
DeltaTime = time.time() - StartTime
Times.append(DeltaTime)
StartTime = time.time()
continue
if ForceFull:
OutputFrame = self.UpscaleFullFrame(Model, Frame)
SimilarityPercentage = 0
Rectangles = []
RegionLog = 'π₯'
UseRegions = False
else:
OutputFrame, SimilarityPercentage, Rectangles, RegionLog, UseRegions = self.UpscaleRegions(
Model, Frame, PrevFrame, UpscaledPrevFrame, InputThreshold, InputMinPercentage, InputMaxRectangles, InputPadding, InputSegmentRows, InputSegmentColumns
)
if UseRegions:
PartialUpscaleCount += 1
else:
PartialUpscaleCount = 0
if Times:
AverageTime = sum(Times) / len(Times)
Eta = HumanizeSeconds((FrameCount - CurrentFrameIndex) * AverageTime)
else:
Eta = None
if UseRegions:
Logger.info(f'{RegionLog} Frame {CurrentFrameIndex}: {SimilarityPercentage:.2f}% Similar, {len(Rectangles)} Regions To Upscale')
else:
Logger.info(f'{RegionLog} Frame {CurrentFrameIndex}: Upscaling Full Frame')
Progress(FrameProgress, desc=f'π¦ Processed Frame {CurrentFrameIndex}/{FrameCount} - {Eta}')
cv2.imwrite(f'{TempDir}/Upscaled_Frame_{CurrentFrameIndex:05d}.png', OutputFrame)
DeltaTime = time.time() - StartTime
Times.append(DeltaTime)
StartTime = time.time()
FrameProgress += PerFrameProgress
PrevFrame = Frame.copy()
UpscaledPrevFrame = OutputFrame.copy()
Progress(1, desc='π¦ Cleaning Up')
self.CleanUp()
return InputVideo, InputVideo
# ============================== #
# Streamlined UI #
# ============================== #
with App.Blocks(
title='Zero2x Video Upscaler', theme=Theme, delete_cache=(-1, 1800)
) as Interface:
App.Markdown('# ποΈ Zero2x Video Upscaler')
with App.Accordion(label='βοΈ About Zero2x', open=False):
App.Markdown('''
**Zero2x** is a work-in-progress video upscaling tool that uses deep learning models to enhance your videos frame by frame.
This app leverages region-based difference detection to speed up processing and reduce unnecessary computation.
---
## β¨ Features
- **Multiple Upscaling Models:** Choose from a selection of pre-trained models for different styles and quality.
- **Region-Based Upscaling:** Only upscale parts of the frame that have changed, making processing faster and more memory-efficient.
- **Full Frame Upscaling:** Optionally upscale every frame in its entirety for maximum quality.
- **Customizable Settings:** Fine-tune thresholds, padding, and region detection for your specific needs.
- **Progress Tracking:** See estimated time remaining and per-frame progress.
- **Downloadable Results:** Download your upscaled video when processing is complete.
---
## π§βπ¬ Technique
This app uses the Segmented Absolute Differences (SAD) (Created by me) program to compare each frame with the previous one.
If only small regions have changed, only those regions are upscaled using the selected model.
If the whole frame is different, the entire frame is upscaled.
This hybrid approach balances speed and quality.
---
## π§ Work In Progress
- More models and settings will be added soon.
- Some features may be experimental or incomplete.
- Feedback and suggestions are welcome!
- The quality of the upscaled video may vary depending on the model and settings used.
---
**Tip:** If you encounter CUDA out-of-memory errors, try increasing the segment grid size or lowering the region count.
**Note:** The reason i named this project Zero2x is because i was inspired by Video2x, but i wanted my own version with a different approach.
It is running on HuggingFace's ZeroGPU hardware, which is why i came up with the name.
''')
with App.Row():
with App.Column():
with App.Group():
InputVideo = App.Video(
label='Input Video', sources=['upload'], height=300
)
ModelList = Upscaler().ListModels()
ModelNames = [Path(Model).stem for Model in ModelList]
InputModel = App.Dropdown(
choices=ModelNames,
label='Select Model',
value=ModelNames[0],
)
with App.Accordion(label='βοΈ Advanced Settings', open=False):
with App.Accordion(label='π Settings Explained', open=False):
App.Markdown('''
- **Use Regions:** When enabled, only changed areas between frames are upscaled. This is faster but may miss subtle changes.
- **Threshold:** Controls how sensitive the difference detection is. I found high values to introduce unmatching regions, be careful.
- **Padding:** Adds extra pixels around detected regions to include out of bounds pixels.
- **Min Percentage:** If the similarity between frames is above this value, only regions are upscaled; otherwise, the full frame is upscaled.
- **Max Rectangles:** Limits the number of regions to process per frame for performance.
- **Segment Rows/Columns:** Controls the grid size for region detection. More segments allow finer detection but may increase processing time. Uses less Vram when used.
- **Full Frame Interval:** Forces a full-frame upscale every N frames. Set to 1 to always upscale the full frame. This is to prevent regions from glitching out.
- **Motion Threshold:** Controls how sensitive the motion detection is. Upscaling motion frames increases faulty regions. Lower = More strict
''')
with App.Group():
InputUseRegions = App.Checkbox(
label='Use Regions',
value=False,
info='Use regions to upscale only the different parts of the video (β‘οΈ Experimental, Faster)',
interactive=True
)
InputThreshold = App.Slider(
label='Threshold',
value=2,
minimum=0,
maximum=10,
step=0.5,
info='Threshold for the SAD algorithm to detect different regions',
interactive=False
)
InputPadding = App.Slider(
label='Padding',
value=1,
minimum=0,
maximum=5,
step=1,
info='Extra padding to include neighboring pixels in the SAD algorithm',
interactive=False
)
InputMinPercentage = App.Slider(
label='Min Percentage',
value=50,
minimum=0,
maximum=100,
step=1,
info='Minimum percentage of similarity to consider upscaling the full frame',
interactive=False
)
InputMaxRectangles = App.Slider(
label='Max Rectangles',
value=10,
minimum=1,
maximum=16,
step=1,
info='Maximum number of rectangles to consider upscaling the full frame',
interactive=False
)
with App.Row():
InputSegmentRows = App.Slider(
label='Segment Rows',
value=32,
minimum=1,
maximum=64,
step=1,
info='Number of rows to segment the video into for processing',
interactive=False
)
InputSegmentColumns = App.Slider(
label='Segment Columns',
value=48,
minimum=1,
maximum=64,
step=1,
info='Number of columns to segment the video into for processing',
interactive=False
)
InputFullFrameInterval = App.Slider(
label='Full Frame Interval',
value=5,
minimum=1,
maximum=100,
step=1,
info='Force a full-frame upscale every N frames (set to 1 to always upscale full frame)',
interactive=False
)
InputMotionThreshold = App.Slider(
label='Motion Threshold',
value=1,
minimum=0,
maximum=10,
step=0.5,
info='Threshold for the motion detection algorithm to consider a frame as different',
interactive=False
)
SubmitButton = App.Button('π Upscale Video')
with App.Column(show_progress=True):
with App.Group():
OutputVideo = App.Video(
label='Output Video', height=300, interactive=False, format=None
)
OutputDownload = App.DownloadButton(
label='πΎ Download Video', interactive=False
)
def ToggleRegionInputs(UseRegions):
return (
App.update(interactive=UseRegions),
App.update(interactive=UseRegions),
App.update(interactive=UseRegions),
App.update(interactive=UseRegions),
App.update(interactive=UseRegions),
App.update(interactive=UseRegions),
App.update(interactive=UseRegions),
App.update(interactive=UseRegions)
)
InputUseRegions.change(
fn=ToggleRegionInputs,
inputs=[InputUseRegions],
outputs=[InputThreshold, InputMinPercentage, InputMaxRectangles, InputPadding, InputSegmentRows, InputSegmentColumns, InputFullFrameInterval, InputMotionThreshold],
)
SubmitButton.click(
fn=Upscaler().Process,
inputs=[
InputVideo,
InputModel,
InputUseRegions,
InputThreshold,
InputMinPercentage,
InputMaxRectangles,
InputPadding,
InputSegmentRows,
InputSegmentColumns,
InputFullFrameInterval,
InputMotionThreshold
],
outputs=[OutputVideo, OutputDownload],
)
if __name__ == '__main__':
os.makedirs(ModelDir, exist_ok=True)
os.makedirs(TempDir, exist_ok=True)
Logger.info('π Starting Video Upscaler')
Interface.launch(pwa=True) |