Spaces:
Running
Running
File size: 5,312 Bytes
44e7320 35f7fbb 44e7320 87d485d 44e7320 87d485d 35f7fbb 87d485d 35f7fbb 65e2013 44e7320 65e2013 44e7320 a137762 44e7320 a137762 44e7320 a137762 87d485d 35f7fbb 87d485d 35f7fbb 87d485d 35f7fbb 87d485d 35f7fbb 87d485d 35f7fbb 87d485d 35f7fbb 87d485d 44e7320 35f7fbb 44e7320 35f7fbb 44e7320 35f7fbb 44e7320 35f7fbb 44e7320 35f7fbb 44e7320 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
import pandas as pd
import gspread
from oauth2client.service_account import ServiceAccountCredentials
import gradio as gr
import plotly.express as px
# === Google Sheets Auth ===
scope = ["https://spreadsheets.google.com/feeds", "https://www.googleapis.com/auth/drive"]
creds = ServiceAccountCredentials.from_json_keyfile_name("tough-star.json", scope)
client = gspread.authorize(creds)
# === Load and clean sheet data ===
sheet_url = "https://docs.google.com/spreadsheets/d/1bpeFS6yihb6niCavpwjWmVEypaSkGxONGg2jZfKX_sA"
sheet = client.open_by_url(sheet_url).worksheet("Calls")
data = sheet.get_all_records()
df = pd.DataFrame(data)
df['Timestamp'] = pd.to_datetime(df['Timestamp'], dayfirst=True, errors='coerce')
df['Date'] = df['Timestamp'].dt.date.astype(str)
df['Time'] = df['Timestamp'].dt.time
location_split = df['Location'].str.split(',', expand=True)
df['Latitude'] = pd.to_numeric(location_split[0], errors='coerce')
df['Longitude'] = pd.to_numeric(location_split[1], errors='coerce')
df = df.dropna(subset=['Date', 'Rep Name', 'Latitude', 'Longitude'])
df = df[(df['Latitude'] != 0) & (df['Longitude'] != 0)]
df = df.sort_values(by=['Rep Name', 'Timestamp'])
df['Time Diff (min)'] = df.groupby(['Rep Name', 'Date'])['Timestamp'].diff().dt.total_seconds().div(60).fillna(0)
df['Visit Order'] = df.groupby(['Rep Name', 'Date']).cumcount() + 1
# === Helper: All unique reps in dataset ===
all_reps = sorted(df['Rep Name'].dropna().unique())
# === Tab 1: Summary ===
def generate_summary(date_str):
day_df = df[df['Date'] == date_str]
# Active reps and their total stops
active = day_df.groupby('Rep Name').size().reset_index(name='Total Visits')
# Detect inactive reps
active_list = active['Rep Name'].tolist()
inactive_list = [rep for rep in all_reps if rep not in active_list]
inactive_df = pd.DataFrame({'Inactive Reps': inactive_list})
return active, inactive_df
# === Tab 2: KAMs ===
def get_reps(date_str):
reps = df[df['Date'] == date_str]['Rep Name'].dropna().unique()
return sorted(reps)
def show_map(date_str, rep):
subset = df[(df['Date'] == date_str) & (df['Rep Name'] == rep)]
if subset.empty:
return "No valid data", None
subset = subset.sort_values(by='Timestamp').copy()
subset['Visit Order'] = range(1, len(subset) + 1)
center_lat = subset['Latitude'].mean()
center_lon = subset['Longitude'].mean()
fig = px.line_mapbox(
subset,
lat="Latitude", lon="Longitude",
hover_name="Dealership Name",
hover_data={"Time": True, "Time Diff (min)": True, "Visit Order": True},
height=700,
zoom=13,
center={"lat": center_lat, "lon": center_lon}
)
scatter = px.scatter_mapbox(
subset,
lat="Latitude", lon="Longitude",
color="Visit Order",
hover_name="Dealership Name",
hover_data=["Time", "Time Diff (min)"],
color_continuous_scale="Bluered"
)
for trace in scatter.data:
fig.add_trace(trace)
fig.add_trace(px.scatter_mapbox(
pd.DataFrame([subset.iloc[0]]),
lat="Latitude", lon="Longitude",
text=["Start"], color_discrete_sequence=["green"]).data[0])
fig.add_trace(px.scatter_mapbox(
pd.DataFrame([subset.iloc[-1]]),
lat="Latitude", lon="Longitude",
text=["End"], color_discrete_sequence=["red"]).data[0])
fig.update_layout(mapbox_style="open-street-map", title=f"๐ {rep}'s Route on {date_str}")
# Final table (without photo)
table = subset[[
'Visit Order', 'Dealership Name', 'Time', 'Time Diff (min)',
'Type of call', 'Sales or service'
]].rename(columns={
'Dealership Name': '๐งญ Dealer',
'Time': '๐ Time',
'Time Diff (min)': 'โฑ๏ธ Time Spent',
'Type of call': '๐ Call Type',
'Sales or service': '๐ผ Category'
})
# Summary footer
total_time = round(table['โฑ๏ธ Time Spent'].sum(), 2)
summary_row = pd.DataFrame([{
'Visit Order': '',
'๐งญ Dealer': f"๐งฎ Total Time: {total_time} min",
'๐ Time': '',
'โฑ๏ธ Time Spent': '',
'๐ Call Type': '',
'๐ผ Category': ''
}])
table = pd.concat([table, summary_row], ignore_index=True)
return table, fig
# === Gradio UI ===
with gr.Blocks() as app:
gr.Markdown("## ๐๏ธ Carfind Rep Tracker")
with gr.Tab("๐ Summary"):
date_summary = gr.Dropdown(label="Select Date", choices=sorted(df['Date'].unique(), reverse=True))
active_table = gr.Dataframe(label="โ
Active Reps (with total visits)")
inactive_table = gr.Dataframe(label="โ ๏ธ Inactive Reps")
date_summary.change(fn=generate_summary, inputs=date_summary, outputs=[active_table, inactive_table])
with gr.Tab("๐ค KAM's"):
date_picker = gr.Dropdown(label="Select Date", choices=sorted(df['Date'].unique(), reverse=True))
rep_picker = gr.Dropdown(label="Select Rep")
btn = gr.Button("Show Route")
table = gr.Dataframe(label="Call Table")
map_plot = gr.Plot(label="Map")
date_picker.change(fn=get_reps, inputs=date_picker, outputs=rep_picker)
btn.click(fn=show_map, inputs=[date_picker, rep_picker], outputs=[table, map_plot])
app.launch()
|