File size: 6,338 Bytes
44e7320
 
 
 
 
 
bc2d37c
 
d975ba4
bc2d37c
 
7074721
 
44e7320
 
 
 
 
35f7fbb
44e7320
 
 
 
 
 
87d485d
44e7320
 
 
 
 
 
 
 
 
87d485d
 
bc2d37c
35f7fbb
 
bc2d37c
35f7fbb
 
 
 
 
 
 
 
bc2d37c
65e2013
 
0b258de
44e7320
65e2013
 
44e7320
 
 
a137762
 
 
 
 
44e7320
 
 
 
a137762
 
 
 
 
 
 
 
 
 
 
 
 
44e7320
a137762
 
 
 
 
 
 
 
 
 
 
 
 
87d485d
0b258de
35f7fbb
 
 
87d485d
 
 
 
35f7fbb
87d485d
 
 
 
 
35f7fbb
87d485d
 
 
35f7fbb
87d485d
 
 
44e7320
 
bc2d37c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44e7320
bc2d37c
 
 
 
 
 
 
 
 
 
4faa722
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import pandas as pd
import gspread
from oauth2client.service_account import ServiceAccountCredentials
import gradio as gr
import plotly.express as px

# === Allowed Users ===
allowed_users = {
    "[email protected]": "Pass.123",
    "[email protected]": "Pass.123",
    "[email protected]": "Pass.123"
}

# === Google Sheets Auth ===
scope = ["https://spreadsheets.google.com/feeds", "https://www.googleapis.com/auth/drive"]
creds = ServiceAccountCredentials.from_json_keyfile_name("tough-star.json", scope)
client = gspread.authorize(creds)

# === Load and clean sheet data ===
sheet_url = "https://docs.google.com/spreadsheets/d/1bpeFS6yihb6niCavpwjWmVEypaSkGxONGg2jZfKX_sA"
sheet = client.open_by_url(sheet_url).worksheet("Calls")
data = sheet.get_all_records()
df = pd.DataFrame(data)

df['Timestamp'] = pd.to_datetime(df['Timestamp'], dayfirst=True, errors='coerce')
df['Date'] = df['Timestamp'].dt.date.astype(str)
df['Time'] = df['Timestamp'].dt.time

location_split = df['Location'].str.split(',', expand=True)
df['Latitude'] = pd.to_numeric(location_split[0], errors='coerce')
df['Longitude'] = pd.to_numeric(location_split[1], errors='coerce')
df = df.dropna(subset=['Date', 'Rep Name', 'Latitude', 'Longitude'])
df = df[(df['Latitude'] != 0) & (df['Longitude'] != 0)]
df = df.sort_values(by=['Rep Name', 'Timestamp'])
df['Time Diff (min)'] = df.groupby(['Rep Name', 'Date'])['Timestamp'].diff().dt.total_seconds().div(60).fillna(0)
df['Visit Order'] = df.groupby(['Rep Name', 'Date']).cumcount() + 1

# === All reps ===
all_reps = sorted(df['Rep Name'].dropna().unique())

# === Summary logic ===
def generate_summary(date_str):
    day_df = df[df['Date'] == date_str]
    active = day_df.groupby('Rep Name').size().reset_index(name='Total Visits')
    active_list = active['Rep Name'].tolist()
    inactive_list = [rep for rep in all_reps if rep not in active_list]
    inactive_df = pd.DataFrame({'Inactive Reps': inactive_list})
    return active, inactive_df

# === KAM logic ===
def get_reps(date_str):
    reps = df[df['Date'] == date_str]['Rep Name'].dropna().unique()
    return gr.update(choices=sorted(reps))

def show_map(date_str, rep):
    subset = df[(df['Date'] == date_str) & (df['Rep Name'] == rep)]
    if subset.empty:
        return "No valid data", None

    subset = subset.sort_values(by='Timestamp').copy()
    subset['Visit Order'] = range(1, len(subset) + 1)
    center_lat = subset['Latitude'].mean()
    center_lon = subset['Longitude'].mean()

    fig = px.line_mapbox(
        subset,
        lat="Latitude", lon="Longitude",
        hover_name="Dealership Name",
        hover_data={"Time": True, "Time Diff (min)": True, "Visit Order": True},
        height=700,
        zoom=13,
        center={"lat": center_lat, "lon": center_lon}
    )

    scatter = px.scatter_mapbox(
        subset,
        lat="Latitude", lon="Longitude",
        color="Visit Order",
        hover_name="Dealership Name",
        hover_data=["Time", "Time Diff (min)"],
        color_continuous_scale="Bluered"
    )
    for trace in scatter.data:
        fig.add_trace(trace)

    fig.add_trace(px.scatter_mapbox(
        pd.DataFrame([subset.iloc[0]]),
        lat="Latitude", lon="Longitude",
        text=["Start"], color_discrete_sequence=["green"]).data[0])
    fig.add_trace(px.scatter_mapbox(
        pd.DataFrame([subset.iloc[-1]]),
        lat="Latitude", lon="Longitude",
        text=["End"], color_discrete_sequence=["red"]).data[0])

    fig.update_layout(mapbox_style="open-street-map", title=f"๐Ÿ“ {rep}'s Route on {date_str}")

    table = subset[[ 
        'Visit Order', 'Dealership Name', 'Time', 'Time Diff (min)', 
        'Type of call', 'Sales or service'
    ]].rename(columns={
        'Dealership Name': '๐Ÿงญ Dealer',
        'Time': '๐Ÿ•’ Time',
        'Time Diff (min)': 'โฑ๏ธ Time Spent',
        'Type of call': '๐Ÿ“ž Call Type',
        'Sales or service': '๐Ÿ’ผ Category'
    })

    total_time = round(table['โฑ๏ธ Time Spent'].sum(), 2)
    summary_row = pd.DataFrame([{
        'Visit Order': '',
        '๐Ÿงญ Dealer': f"๐Ÿงฎ Total Time: {total_time} min",
        '๐Ÿ•’ Time': '',
        'โฑ๏ธ Time Spent': '',
        '๐Ÿ“ž Call Type': '',
        '๐Ÿ’ผ Category': ''
    }])
    table = pd.concat([table, summary_row], ignore_index=True)

    return table, fig

# === Gradio App ===
def build_dashboard():
    with gr.Blocks() as dashboard:
        gr.Markdown("## ๐Ÿ—‚๏ธ Carfind Rep Tracker")

        with gr.Tab("๐Ÿ“Š Summary"):
            date_summary = gr.Dropdown(label="Select Date", choices=sorted(df['Date'].unique(), reverse=True))
            active_table = gr.Dataframe(label="โœ… Active Reps (with total visits)")
            inactive_table = gr.Dataframe(label="โš ๏ธ Inactive Reps")
            date_summary.change(fn=generate_summary, inputs=date_summary, outputs=[active_table, inactive_table])

        with gr.Tab("๐Ÿ‘ค KAM's"):
            with gr.Row():
                with gr.Column(scale=1):
                    date_picker = gr.Dropdown(label="Select Date", choices=sorted(df['Date'].unique(), reverse=True))
                    rep_picker = gr.Dropdown(label="Select Rep")
                    btn = gr.Button("Show Route")
                with gr.Column(scale=2):
                    table = gr.Dataframe(label="Call Table")

            map_plot = gr.Plot(label="Map")
            date_picker.change(fn=get_reps, inputs=date_picker, outputs=rep_picker)
            btn.click(fn=show_map, inputs=[date_picker, rep_picker], outputs=[table, map_plot])
    return dashboard

def authenticate(email, password):
    if email in allowed_users and allowed_users[email] == password:
        return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
    else:
        return "Invalid login", None, None

with gr.Blocks() as app:
    gr.Markdown("## ๐Ÿ” Login to Access Carfind Rep Tracker")
    with gr.Row():
        email_input = gr.Textbox(label="Email")
        pass_input = gr.Textbox(label="Password", type="password")
    login_button = gr.Button("Login")
    error_box = gr.Markdown("", visible=False)
    dashboard = build_dashboard()
    dashboard.visible = False

    login_button.click(fn=authenticate, inputs=[email_input, pass_input], outputs=[error_box, error_box, dashboard])

app.launch()