Spaces:
Sleeping
Sleeping
File size: 6,092 Bytes
44e7320 7074721 d975ba4 7074721 44e7320 35f7fbb 44e7320 87d485d 44e7320 87d485d 35f7fbb 65e2013 0b258de 44e7320 65e2013 44e7320 a137762 44e7320 a137762 44e7320 a137762 87d485d 41944aa 0b258de 35f7fbb 87d485d 35f7fbb 87d485d 41944aa 87d485d 35f7fbb 87d485d 35f7fbb 87d485d 44e7320 35f7fbb 44e7320 35f7fbb 44e7320 35f7fbb 41944aa 4faa722 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import pandas as pd
import gspread
from oauth2client.service_account import ServiceAccountCredentials
import gradio as gr
import plotly.express as px
# ------------------ Authentication ------------------
VALID_USERS = {
"[email protected]": "Pass.123",
"[email protected]": "Pass.123",
"[email protected]": "Pass.123",
}
def login():
st.title("๐ Login Required")
email = st.text_input("Email")
password = st.text_input("Password", type="password")
if st.button("Login"):
if VALID_USERS.get(email) == password:
st.session_state.authenticated = True
st.rerun()
else:
st.error("โ Incorrect email or password.")
if "authenticated" not in st.session_state:
st.session_state.authenticated = False
if not st.session_state.authenticated:
login()
st.stop()
# === Google Sheets Auth ===
scope = ["https://spreadsheets.google.com/feeds", "https://www.googleapis.com/auth/drive"]
creds = ServiceAccountCredentials.from_json_keyfile_name("tough-star.json", scope)
client = gspread.authorize(creds)
# === Load and clean sheet data ===
sheet_url = "https://docs.google.com/spreadsheets/d/1bpeFS6yihb6niCavpwjWmVEypaSkGxONGg2jZfKX_sA"
sheet = client.open_by_url(sheet_url).worksheet("Calls")
data = sheet.get_all_records()
df = pd.DataFrame(data)
df['Timestamp'] = pd.to_datetime(df['Timestamp'], dayfirst=True, errors='coerce')
df['Date'] = df['Timestamp'].dt.date.astype(str)
df['Time'] = df['Timestamp'].dt.time
location_split = df['Location'].str.split(',', expand=True)
df['Latitude'] = pd.to_numeric(location_split[0], errors='coerce')
df['Longitude'] = pd.to_numeric(location_split[1], errors='coerce')
df = df.dropna(subset=['Date', 'Rep Name', 'Latitude', 'Longitude'])
df = df[(df['Latitude'] != 0) & (df['Longitude'] != 0)]
df = df.sort_values(by=['Rep Name', 'Timestamp'])
df['Time Diff (min)'] = df.groupby(['Rep Name', 'Date'])['Timestamp'].diff().dt.total_seconds().div(60).fillna(0)
df['Visit Order'] = df.groupby(['Rep Name', 'Date']).cumcount() + 1
# === Helper: All unique reps in dataset ===
all_reps = sorted(df['Rep Name'].dropna().unique())
# === Tab 1: Summary ===
def generate_summary(date_str):
day_df = df[df['Date'] == date_str]
active = day_df.groupby('Rep Name').size().reset_index(name='Total Visits')
active_list = active['Rep Name'].tolist()
inactive_list = [rep for rep in all_reps if rep not in active_list]
inactive_df = pd.DataFrame({'Inactive Reps': inactive_list})
return active, inactive_df
# === Tab 2: KAMs ===
def get_reps(date_str):
reps = df[df['Date'] == date_str]['Rep Name'].dropna().unique()
return gr.update(choices=sorted(reps))
def show_map(date_str, rep):
subset = df[(df['Date'] == date_str) & (df['Rep Name'] == rep)]
if subset.empty:
return "No valid data", None
subset = subset.sort_values(by='Timestamp').copy()
subset['Visit Order'] = range(1, len(subset) + 1)
center_lat = subset['Latitude'].mean()
center_lon = subset['Longitude'].mean()
fig = px.line_mapbox(
subset,
lat="Latitude", lon="Longitude",
hover_name="Dealership Name",
hover_data={"Time": True, "Time Diff (min)": True, "Visit Order": True},
height=700,
zoom=13,
center={"lat": center_lat, "lon": center_lon}
)
scatter = px.scatter_mapbox(
subset,
lat="Latitude", lon="Longitude",
color="Visit Order",
hover_name="Dealership Name",
hover_data=["Time", "Time Diff (min)"],
color_continuous_scale="Bluered"
)
for trace in scatter.data:
fig.add_trace(trace)
fig.add_trace(px.scatter_mapbox(
pd.DataFrame([subset.iloc[0]]),
lat="Latitude", lon="Longitude",
text=["Start"], color_discrete_sequence=["green"]).data[0])
fig.add_trace(px.scatter_mapbox(
pd.DataFrame([subset.iloc[-1]]),
lat="Latitude", lon="Longitude",
text=["End"], color_discrete_sequence=["red"]).data[0])
fig.update_layout(mapbox_style="open-street-map", title=f"๐ {rep}'s Route on {date_str}")
# Final table
table = subset[[
'Visit Order', 'Dealership Name', 'Time', 'Time Diff (min)',
'Type of call', 'Sales or service'
]].rename(columns={
'Dealership Name': '๐งญ Dealer',
'Time': '๐ Time',
'Time Diff (min)': 'โฑ๏ธ Time Spent',
'Type of call': '๐ Call Type',
'Sales or service': '๐ผ Category'
})
# Add summary row
total_time = round(table['โฑ๏ธ Time Spent'].sum(), 2)
summary_row = pd.DataFrame([{
'Visit Order': '',
'๐งญ Dealer': f"๐งฎ Total Time: {total_time} min",
'๐ Time': '',
'โฑ๏ธ Time Spent': '',
'๐ Call Type': '',
'๐ผ Category': ''
}])
table = pd.concat([table, summary_row], ignore_index=True)
return table, fig
# === Gradio UI ===
with gr.Blocks() as app:
gr.Markdown("## ๐๏ธ Carfind Rep Tracker")
with gr.Tab("๐ Summary"):
date_summary = gr.Dropdown(label="Select Date", choices=sorted(df['Date'].unique(), reverse=True))
active_table = gr.Dataframe(label="โ
Active Reps (with total visits)")
inactive_table = gr.Dataframe(label="โ ๏ธ Inactive Reps")
date_summary.change(fn=generate_summary, inputs=date_summary, outputs=[active_table, inactive_table])
with gr.Tab("๐ค KAM's"):
with gr.Row():
with gr.Column(scale=1):
date_picker = gr.Dropdown(label="Select Date", choices=sorted(df['Date'].unique(), reverse=True))
rep_picker = gr.Dropdown(label="Select Rep")
btn = gr.Button("Show Route")
with gr.Column(scale=2):
table = gr.Dataframe(label="Call Table")
map_plot = gr.Plot(label="Map")
date_picker.change(fn=get_reps, inputs=date_picker, outputs=rep_picker)
btn.click(fn=show_map, inputs=[date_picker, rep_picker], outputs=[table, map_plot])
app.launch()
|