File size: 8,353 Bytes
44e7320
 
106b612
36d76ed
106b612
44e7320
106b612
d685333
d975ba4
bc2d37c
 
7074721
 
106b612
44e7320
36d76ed
44e7320
36d76ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f68916e
35f7fbb
36d76ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35f7fbb
36d76ed
 
 
 
 
f68916e
35f7fbb
36d76ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87d485d
36d76ed
 
 
 
 
 
 
 
 
 
 
 
44e7320
106b612
d685333
 
106b612
 
d685333
 
 
 
 
 
36d76ed
 
 
f68916e
d685333
f68916e
36d76ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4fc9ed6
106b612
 
d685333
6cca50e
36d76ed
6cca50e
106b612
6cca50e
36d76ed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import pandas as pd
import gspread
import gradio as gr
import plotly.express as px
from oauth2client.service_account import ServiceAccountCredentials

# ------------------ AUTH ------------------
VALID_USERS = {
    "[email protected]": "Pass.123",
    "[email protected]": "Pass.123",
    "[email protected]": "Pass.123"
}

# ------------------ GOOGLE SHEET SETUP ------------------
scope = ["https://spreadsheets.google.com/feeds", "https://www.googleapis.com/auth/drive"]
creds = ServiceAccountCredentials.from_json_keyfile_name("tough-star.json", scope)
client = gspread.authorize(creds)
sheet_url = "https://docs.google.com/spreadsheets/d/1bpeFS6yihb6niCavpwjWmVEypaSkGxONGg2jZfKX_sA"

# ------------------ DATA REFRESH FUNCTION ------------------
def refresh_data():
    sheet = client.open_by_url(sheet_url).worksheet("Calls")
    data = sheet.get_all_records()
    df = pd.DataFrame(data)

    # Timestamp parsing
    df['Timestamp'] = pd.to_datetime(df['Timestamp'], dayfirst=True, errors='coerce')
    df['Date'] = df['Timestamp'].dt.date.astype(str)
    df['Time'] = df['Timestamp'].dt.time

    # Location parsing
    location_split = df['Location'].str.split(',', expand=True)
    df['Latitude'] = pd.to_numeric(location_split[0], errors='coerce')
    df['Longitude'] = pd.to_numeric(location_split[1], errors='coerce')

    # Data cleaning
    df = df.dropna(subset=['Date', 'Rep Name', 'Latitude', 'Longitude'])
    df = df[(df['Latitude'] != 0) & (df['Longitude'] != 0)]
    df = df.sort_values(by=['Rep Name', 'Timestamp'])
    df['Time Diff (min)'] = df.groupby(['Rep Name', 'Date'])['Timestamp'].diff().dt.total_seconds().div(60).fillna(0)
    df['Visit Order'] = df.groupby(['Rep Name', 'Date']).cumcount() + 1

    return df

# ------------------ DEALER ESCALATIONS DATA FUNCTION ------------------
def get_dealer_escalations():
    dealers_sheet = client.open_by_url(sheet_url).worksheet("Dealers")
    dealers_data = dealers_sheet.get_all_records()
    dealers_df = pd.DataFrame(dealers_data)

    # Standardize column names (in case of different casing/spacing)
    dealers_df.columns = [c.strip() for c in dealers_df.columns]

    # Filter for rows where Escalate Dealer == 'yes' (case-insensitive)
    mask = dealers_df['Escalate Dealer'].str.strip() == 'Yes'
    filtered_df = dealers_df.loc[mask, [
        'Dealership Name',
        'Rep Name',
        'Escalate Dealer',
        'Escalation Comment'
    ]]

    # Optional: Sort by Rep Name and Dealership Name
    filtered_df = filtered_df.sort_values(by=['Rep Name', 'Dealership Name'])

    # If there are no escalations, show a friendly empty DataFrame
    if filtered_df.empty:
        filtered_df = pd.DataFrame(
            [["No dealer escalations found.", "", "", ""]],
            columns=['Dealership Name', 'Rep Name', 'Escalate Dealer', 'Escalation Comment']
        )

    return filtered_df

# ------------------ DASHBOARD FUNCTIONS ------------------
def generate_summary(date_str):
    df = refresh_data()
    all_reps = sorted(df['Rep Name'].dropna().unique())
    day_df = df[df['Date'] == date_str]
    active = day_df.groupby('Rep Name').size().reset_index(name='Total Visits')
    active_list = active['Rep Name'].tolist()
    inactive_list = [rep for rep in all_reps if rep not in active_list]
    inactive_df = pd.DataFrame({'Inactive Reps': inactive_list})
    return active, inactive_df

def get_reps(date_str):
    df = refresh_data()
    reps = df[df['Date'] == date_str]['Rep Name'].dropna().unique()
    return gr.update(choices=sorted(reps))

def show_map(date_str, rep):
    df = refresh_data()
    subset = df[(df['Date'] == date_str) & (df['Rep Name'] == rep)]
    if subset.empty:
        return "No valid data", None

    subset = subset.sort_values(by='Timestamp').copy()
    subset['Visit Order'] = range(1, len(subset) + 1)
    center_lat = subset['Latitude'].mean()
    center_lon = subset['Longitude'].mean()

    fig = px.line_mapbox(
        subset,
        lat="Latitude", lon="Longitude",
        hover_name="Dealership Name",
        hover_data={"Time": True, "Time Diff (min)": True, "Visit Order": True},
        height=700,
        zoom=13,
        center={"lat": center_lat, "lon": center_lon}
    )

    scatter = px.scatter_mapbox(
        subset,
        lat="Latitude", lon="Longitude",
        color="Visit Order",
        hover_name="Dealership Name",
        hover_data=["Time", "Time Diff (min)"],
        color_continuous_scale="Bluered"
    )
    for trace in scatter.data:
        fig.add_trace(trace)

    fig.add_trace(px.scatter_mapbox(
        pd.DataFrame([subset.iloc[0]]),
        lat="Latitude", lon="Longitude",
        text=["Start"], color_discrete_sequence=["green"]).data[0])
    fig.add_trace(px.scatter_mapbox(
        pd.DataFrame([subset.iloc[-1]]),
        lat="Latitude", lon="Longitude",
        text=["End"], color_discrete_sequence=["red"]).data[0])

    fig.update_layout(mapbox_style="open-street-map", title=f"๐Ÿ“ {rep}'s Route on {date_str}")

    table = subset[[ 
        'Visit Order', 'Dealership Name', 'Time', 'Time Diff (min)', 
        'Type of call', 'Sales or service'
    ]].rename(columns={
        'Dealership Name': '๐Ÿงญ Dealer',
        'Time': '๐Ÿ•’ Time',
        'Time Diff (min)': 'โฑ๏ธ Time Spent',
        'Type of call': '๐Ÿ“ž Call Type',
        'Sales or service': '๐Ÿ’ผ Category'
    })

    total_time = round(table['โฑ๏ธ Time Spent'].sum(), 2)
    summary_row = pd.DataFrame([{
        'Visit Order': '',
        '๐Ÿงญ Dealer': f"๐Ÿงฎ Total Time: {total_time} min",
        '๐Ÿ•’ Time': '',
        'โฑ๏ธ Time Spent': '',
        '๐Ÿ“ž Call Type': '',
        '๐Ÿ’ผ Category': ''
    }])
    table = pd.concat([table, summary_row], ignore_index=True)
    return table, fig

# ------------------ GRADIO APP ------------------
with gr.Blocks() as app:
    with gr.Row():
        with gr.Column(visible=True) as login_ui:
            gr.Markdown("## ๐Ÿ” Login Required")
            email = gr.Textbox(label="Email")
            password = gr.Textbox(label="Password", type="password")
            login_btn = gr.Button("Login")
            login_msg = gr.Markdown("")

        with gr.Column(visible=False) as main_ui:
            gr.Markdown("## ๐Ÿ—‚๏ธ Carfind Rep Tracker")
            df_initial = refresh_data()
            unique_dates = sorted(df_initial['Date'].unique(), reverse=True)

            with gr.Tab("๐Ÿ“Š Summary"):
                date_summary = gr.Dropdown(label="Select Date", choices=unique_dates)
                active_table = gr.Dataframe(label="โœ… Active Reps (with total visits)")
                inactive_table = gr.Dataframe(label="โš ๏ธ Inactive Reps")
                date_summary.change(fn=generate_summary, inputs=date_summary, outputs=[active_table, inactive_table])

            with gr.Tab("๐Ÿ‘ค KAM's"):
                with gr.Row():
                    with gr.Column(scale=1):
                        date_picker = gr.Dropdown(label="Select Date", choices=unique_dates)
                        rep_picker = gr.Dropdown(label="Select Rep")
                        btn = gr.Button("Show Route")
                    with gr.Column(scale=2):
                        table = gr.Dataframe(label="Call Table")

                map_plot = gr.Plot(label="Map")
                date_picker.change(fn=get_reps, inputs=date_picker, outputs=rep_picker)
                btn.click(fn=show_map, inputs=[date_picker, rep_picker], outputs=[table, map_plot])

            with gr.Tab("๐Ÿšจ Dealer Escalations"):
                gr.Markdown("### ๐Ÿšจ Dealer Escalations (Only showing escalated dealers)")
                escalations_df = gr.Dataframe(value=get_dealer_escalations, label="Escalated Dealers", interactive=False)
                refresh_btn = gr.Button("๐Ÿ”„ Refresh Escalations")

                # Refreshes the dataframe on button click
                refresh_btn.click(fn=get_dealer_escalations, outputs=escalations_df)

    def do_login(user, pw):
        if VALID_USERS.get(user) == pw:
            return gr.update(visible=False), gr.update(visible=True), ""
        else:
            return gr.update(visible=True), gr.update(visible=False), "โŒ Invalid email or password."

    login_btn.click(fn=do_login, inputs=[email, password], outputs=[login_ui, main_ui, login_msg])

app.launch()