Spaces:
Running
Running
File size: 8,353 Bytes
44e7320 106b612 36d76ed 106b612 44e7320 106b612 d685333 d975ba4 bc2d37c 7074721 106b612 44e7320 36d76ed 44e7320 36d76ed f68916e 35f7fbb 36d76ed 35f7fbb 36d76ed f68916e 35f7fbb 36d76ed 87d485d 36d76ed 44e7320 106b612 d685333 106b612 d685333 36d76ed f68916e d685333 f68916e 36d76ed 4fc9ed6 106b612 d685333 6cca50e 36d76ed 6cca50e 106b612 6cca50e 36d76ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import pandas as pd
import gspread
import gradio as gr
import plotly.express as px
from oauth2client.service_account import ServiceAccountCredentials
# ------------------ AUTH ------------------
VALID_USERS = {
"[email protected]": "Pass.123",
"[email protected]": "Pass.123",
"[email protected]": "Pass.123"
}
# ------------------ GOOGLE SHEET SETUP ------------------
scope = ["https://spreadsheets.google.com/feeds", "https://www.googleapis.com/auth/drive"]
creds = ServiceAccountCredentials.from_json_keyfile_name("tough-star.json", scope)
client = gspread.authorize(creds)
sheet_url = "https://docs.google.com/spreadsheets/d/1bpeFS6yihb6niCavpwjWmVEypaSkGxONGg2jZfKX_sA"
# ------------------ DATA REFRESH FUNCTION ------------------
def refresh_data():
sheet = client.open_by_url(sheet_url).worksheet("Calls")
data = sheet.get_all_records()
df = pd.DataFrame(data)
# Timestamp parsing
df['Timestamp'] = pd.to_datetime(df['Timestamp'], dayfirst=True, errors='coerce')
df['Date'] = df['Timestamp'].dt.date.astype(str)
df['Time'] = df['Timestamp'].dt.time
# Location parsing
location_split = df['Location'].str.split(',', expand=True)
df['Latitude'] = pd.to_numeric(location_split[0], errors='coerce')
df['Longitude'] = pd.to_numeric(location_split[1], errors='coerce')
# Data cleaning
df = df.dropna(subset=['Date', 'Rep Name', 'Latitude', 'Longitude'])
df = df[(df['Latitude'] != 0) & (df['Longitude'] != 0)]
df = df.sort_values(by=['Rep Name', 'Timestamp'])
df['Time Diff (min)'] = df.groupby(['Rep Name', 'Date'])['Timestamp'].diff().dt.total_seconds().div(60).fillna(0)
df['Visit Order'] = df.groupby(['Rep Name', 'Date']).cumcount() + 1
return df
# ------------------ DEALER ESCALATIONS DATA FUNCTION ------------------
def get_dealer_escalations():
dealers_sheet = client.open_by_url(sheet_url).worksheet("Dealers")
dealers_data = dealers_sheet.get_all_records()
dealers_df = pd.DataFrame(dealers_data)
# Standardize column names (in case of different casing/spacing)
dealers_df.columns = [c.strip() for c in dealers_df.columns]
# Filter for rows where Escalate Dealer == 'yes' (case-insensitive)
mask = dealers_df['Escalate Dealer'].str.strip() == 'Yes'
filtered_df = dealers_df.loc[mask, [
'Dealership Name',
'Rep Name',
'Escalate Dealer',
'Escalation Comment'
]]
# Optional: Sort by Rep Name and Dealership Name
filtered_df = filtered_df.sort_values(by=['Rep Name', 'Dealership Name'])
# If there are no escalations, show a friendly empty DataFrame
if filtered_df.empty:
filtered_df = pd.DataFrame(
[["No dealer escalations found.", "", "", ""]],
columns=['Dealership Name', 'Rep Name', 'Escalate Dealer', 'Escalation Comment']
)
return filtered_df
# ------------------ DASHBOARD FUNCTIONS ------------------
def generate_summary(date_str):
df = refresh_data()
all_reps = sorted(df['Rep Name'].dropna().unique())
day_df = df[df['Date'] == date_str]
active = day_df.groupby('Rep Name').size().reset_index(name='Total Visits')
active_list = active['Rep Name'].tolist()
inactive_list = [rep for rep in all_reps if rep not in active_list]
inactive_df = pd.DataFrame({'Inactive Reps': inactive_list})
return active, inactive_df
def get_reps(date_str):
df = refresh_data()
reps = df[df['Date'] == date_str]['Rep Name'].dropna().unique()
return gr.update(choices=sorted(reps))
def show_map(date_str, rep):
df = refresh_data()
subset = df[(df['Date'] == date_str) & (df['Rep Name'] == rep)]
if subset.empty:
return "No valid data", None
subset = subset.sort_values(by='Timestamp').copy()
subset['Visit Order'] = range(1, len(subset) + 1)
center_lat = subset['Latitude'].mean()
center_lon = subset['Longitude'].mean()
fig = px.line_mapbox(
subset,
lat="Latitude", lon="Longitude",
hover_name="Dealership Name",
hover_data={"Time": True, "Time Diff (min)": True, "Visit Order": True},
height=700,
zoom=13,
center={"lat": center_lat, "lon": center_lon}
)
scatter = px.scatter_mapbox(
subset,
lat="Latitude", lon="Longitude",
color="Visit Order",
hover_name="Dealership Name",
hover_data=["Time", "Time Diff (min)"],
color_continuous_scale="Bluered"
)
for trace in scatter.data:
fig.add_trace(trace)
fig.add_trace(px.scatter_mapbox(
pd.DataFrame([subset.iloc[0]]),
lat="Latitude", lon="Longitude",
text=["Start"], color_discrete_sequence=["green"]).data[0])
fig.add_trace(px.scatter_mapbox(
pd.DataFrame([subset.iloc[-1]]),
lat="Latitude", lon="Longitude",
text=["End"], color_discrete_sequence=["red"]).data[0])
fig.update_layout(mapbox_style="open-street-map", title=f"๐ {rep}'s Route on {date_str}")
table = subset[[
'Visit Order', 'Dealership Name', 'Time', 'Time Diff (min)',
'Type of call', 'Sales or service'
]].rename(columns={
'Dealership Name': '๐งญ Dealer',
'Time': '๐ Time',
'Time Diff (min)': 'โฑ๏ธ Time Spent',
'Type of call': '๐ Call Type',
'Sales or service': '๐ผ Category'
})
total_time = round(table['โฑ๏ธ Time Spent'].sum(), 2)
summary_row = pd.DataFrame([{
'Visit Order': '',
'๐งญ Dealer': f"๐งฎ Total Time: {total_time} min",
'๐ Time': '',
'โฑ๏ธ Time Spent': '',
'๐ Call Type': '',
'๐ผ Category': ''
}])
table = pd.concat([table, summary_row], ignore_index=True)
return table, fig
# ------------------ GRADIO APP ------------------
with gr.Blocks() as app:
with gr.Row():
with gr.Column(visible=True) as login_ui:
gr.Markdown("## ๐ Login Required")
email = gr.Textbox(label="Email")
password = gr.Textbox(label="Password", type="password")
login_btn = gr.Button("Login")
login_msg = gr.Markdown("")
with gr.Column(visible=False) as main_ui:
gr.Markdown("## ๐๏ธ Carfind Rep Tracker")
df_initial = refresh_data()
unique_dates = sorted(df_initial['Date'].unique(), reverse=True)
with gr.Tab("๐ Summary"):
date_summary = gr.Dropdown(label="Select Date", choices=unique_dates)
active_table = gr.Dataframe(label="โ
Active Reps (with total visits)")
inactive_table = gr.Dataframe(label="โ ๏ธ Inactive Reps")
date_summary.change(fn=generate_summary, inputs=date_summary, outputs=[active_table, inactive_table])
with gr.Tab("๐ค KAM's"):
with gr.Row():
with gr.Column(scale=1):
date_picker = gr.Dropdown(label="Select Date", choices=unique_dates)
rep_picker = gr.Dropdown(label="Select Rep")
btn = gr.Button("Show Route")
with gr.Column(scale=2):
table = gr.Dataframe(label="Call Table")
map_plot = gr.Plot(label="Map")
date_picker.change(fn=get_reps, inputs=date_picker, outputs=rep_picker)
btn.click(fn=show_map, inputs=[date_picker, rep_picker], outputs=[table, map_plot])
with gr.Tab("๐จ Dealer Escalations"):
gr.Markdown("### ๐จ Dealer Escalations (Only showing escalated dealers)")
escalations_df = gr.Dataframe(value=get_dealer_escalations, label="Escalated Dealers", interactive=False)
refresh_btn = gr.Button("๐ Refresh Escalations")
# Refreshes the dataframe on button click
refresh_btn.click(fn=get_dealer_escalations, outputs=escalations_df)
def do_login(user, pw):
if VALID_USERS.get(user) == pw:
return gr.update(visible=False), gr.update(visible=True), ""
else:
return gr.update(visible=True), gr.update(visible=False), "โ Invalid email or password."
login_btn.click(fn=do_login, inputs=[email, password], outputs=[login_ui, main_ui, login_msg])
app.launch() |