IAMTFRMZA's picture
Update app.py
d975ba4 verified
raw
history blame
6.09 kB
import pandas as pd
import gspread
from oauth2client.service_account import ServiceAccountCredentials
import gradio as gr
import plotly.express as px
# ------------------ Authentication ------------------
VALID_USERS = {
"[email protected]": "Pass.123",
"[email protected]": "Pass.123",
"[email protected]": "Pass.123",
}
def login():
st.title("๐Ÿ” Login Required")
email = st.text_input("Email")
password = st.text_input("Password", type="password")
if st.button("Login"):
if VALID_USERS.get(email) == password:
st.session_state.authenticated = True
st.rerun()
else:
st.error("โŒ Incorrect email or password.")
if "authenticated" not in st.session_state:
st.session_state.authenticated = False
if not st.session_state.authenticated:
login()
st.stop()
# === Google Sheets Auth ===
scope = ["https://spreadsheets.google.com/feeds", "https://www.googleapis.com/auth/drive"]
creds = ServiceAccountCredentials.from_json_keyfile_name("tough-star.json", scope)
client = gspread.authorize(creds)
# === Load and clean sheet data ===
sheet_url = "https://docs.google.com/spreadsheets/d/1bpeFS6yihb6niCavpwjWmVEypaSkGxONGg2jZfKX_sA"
sheet = client.open_by_url(sheet_url).worksheet("Calls")
data = sheet.get_all_records()
df = pd.DataFrame(data)
df['Timestamp'] = pd.to_datetime(df['Timestamp'], dayfirst=True, errors='coerce')
df['Date'] = df['Timestamp'].dt.date.astype(str)
df['Time'] = df['Timestamp'].dt.time
location_split = df['Location'].str.split(',', expand=True)
df['Latitude'] = pd.to_numeric(location_split[0], errors='coerce')
df['Longitude'] = pd.to_numeric(location_split[1], errors='coerce')
df = df.dropna(subset=['Date', 'Rep Name', 'Latitude', 'Longitude'])
df = df[(df['Latitude'] != 0) & (df['Longitude'] != 0)]
df = df.sort_values(by=['Rep Name', 'Timestamp'])
df['Time Diff (min)'] = df.groupby(['Rep Name', 'Date'])['Timestamp'].diff().dt.total_seconds().div(60).fillna(0)
df['Visit Order'] = df.groupby(['Rep Name', 'Date']).cumcount() + 1
# === Helper: All unique reps in dataset ===
all_reps = sorted(df['Rep Name'].dropna().unique())
# === Tab 1: Summary ===
def generate_summary(date_str):
day_df = df[df['Date'] == date_str]
active = day_df.groupby('Rep Name').size().reset_index(name='Total Visits')
active_list = active['Rep Name'].tolist()
inactive_list = [rep for rep in all_reps if rep not in active_list]
inactive_df = pd.DataFrame({'Inactive Reps': inactive_list})
return active, inactive_df
# === Tab 2: KAMs ===
def get_reps(date_str):
reps = df[df['Date'] == date_str]['Rep Name'].dropna().unique()
return gr.update(choices=sorted(reps))
def show_map(date_str, rep):
subset = df[(df['Date'] == date_str) & (df['Rep Name'] == rep)]
if subset.empty:
return "No valid data", None
subset = subset.sort_values(by='Timestamp').copy()
subset['Visit Order'] = range(1, len(subset) + 1)
center_lat = subset['Latitude'].mean()
center_lon = subset['Longitude'].mean()
fig = px.line_mapbox(
subset,
lat="Latitude", lon="Longitude",
hover_name="Dealership Name",
hover_data={"Time": True, "Time Diff (min)": True, "Visit Order": True},
height=700,
zoom=13,
center={"lat": center_lat, "lon": center_lon}
)
scatter = px.scatter_mapbox(
subset,
lat="Latitude", lon="Longitude",
color="Visit Order",
hover_name="Dealership Name",
hover_data=["Time", "Time Diff (min)"],
color_continuous_scale="Bluered"
)
for trace in scatter.data:
fig.add_trace(trace)
fig.add_trace(px.scatter_mapbox(
pd.DataFrame([subset.iloc[0]]),
lat="Latitude", lon="Longitude",
text=["Start"], color_discrete_sequence=["green"]).data[0])
fig.add_trace(px.scatter_mapbox(
pd.DataFrame([subset.iloc[-1]]),
lat="Latitude", lon="Longitude",
text=["End"], color_discrete_sequence=["red"]).data[0])
fig.update_layout(mapbox_style="open-street-map", title=f"๐Ÿ“ {rep}'s Route on {date_str}")
# Final table
table = subset[[
'Visit Order', 'Dealership Name', 'Time', 'Time Diff (min)',
'Type of call', 'Sales or service'
]].rename(columns={
'Dealership Name': '๐Ÿงญ Dealer',
'Time': '๐Ÿ•’ Time',
'Time Diff (min)': 'โฑ๏ธ Time Spent',
'Type of call': '๐Ÿ“ž Call Type',
'Sales or service': '๐Ÿ’ผ Category'
})
# Add summary row
total_time = round(table['โฑ๏ธ Time Spent'].sum(), 2)
summary_row = pd.DataFrame([{
'Visit Order': '',
'๐Ÿงญ Dealer': f"๐Ÿงฎ Total Time: {total_time} min",
'๐Ÿ•’ Time': '',
'โฑ๏ธ Time Spent': '',
'๐Ÿ“ž Call Type': '',
'๐Ÿ’ผ Category': ''
}])
table = pd.concat([table, summary_row], ignore_index=True)
return table, fig
# === Gradio UI ===
with gr.Blocks() as app:
gr.Markdown("## ๐Ÿ—‚๏ธ Carfind Rep Tracker")
with gr.Tab("๐Ÿ“Š Summary"):
date_summary = gr.Dropdown(label="Select Date", choices=sorted(df['Date'].unique(), reverse=True))
active_table = gr.Dataframe(label="โœ… Active Reps (with total visits)")
inactive_table = gr.Dataframe(label="โš ๏ธ Inactive Reps")
date_summary.change(fn=generate_summary, inputs=date_summary, outputs=[active_table, inactive_table])
with gr.Tab("๐Ÿ‘ค KAM's"):
with gr.Row():
with gr.Column(scale=1):
date_picker = gr.Dropdown(label="Select Date", choices=sorted(df['Date'].unique(), reverse=True))
rep_picker = gr.Dropdown(label="Select Rep")
btn = gr.Button("Show Route")
with gr.Column(scale=2):
table = gr.Dataframe(label="Call Table")
map_plot = gr.Plot(label="Map")
date_picker.change(fn=get_reps, inputs=date_picker, outputs=rep_picker)
btn.click(fn=show_map, inputs=[date_picker, rep_picker], outputs=[table, map_plot])
app.launch()