Spaces:
Sleeping
Sleeping
File size: 9,758 Bytes
06faff1 44e7320 01139ed 93be3f3 1051212 c8f0059 6475632 7074721 06faff1 2e0be03 c8f0059 dfbe477 01139ed 6475632 c8f0059 f68916e 6475632 c8f0059 6475632 2e0be03 c8f0059 1051212 6475632 2e0be03 c8f0059 06faff1 c8f0059 1051212 2e0be03 6475632 2e0be03 6475632 2e0be03 c8f0059 2e0be03 bc61590 a40135d bc61590 c8f0059 2e0be03 c8f0059 6475632 0222536 01139ed c8f0059 2e0be03 6475632 c8f0059 6475632 c8f0059 2e0be03 c8f0059 2e0be03 6475632 0222536 6475632 1c4332a 01139ed c8f0059 2e0be03 6475632 2f4c490 c8f0059 6475632 1c4332a 2e0be03 01139ed c8f0059 2e0be03 6475632 1c4332a 6475632 6903ce6 01139ed 6903ce6 6475632 6903ce6 79e1d8c 6903ce6 2e0be03 6475632 c8f0059 6475632 c8f0059 a40135d 1c4332a 01139ed 6475632 c8f0059 6475632 01139ed 6475632 2e0be03 01139ed a40135d 2e0be03 a40135d c8f0059 01139ed a40135d 6475632 2e0be03 06faff1 6475632 2f4c490 6475632 2e0be03 6475632 2e0be03 6475632 2e0be03 6475632 2e0be03 6475632 2f4c490 6475632 2e0be03 6475632 2e0be03 6475632 2e0be03 6475632 c8f0059 2e0be03 c8f0059 6475632 2f4c490 2e0be03 6475632 2e0be03 c8f0059 6475632 6903ce6 2e0be03 6903ce6 6475632 a40135d 2e0be03 6475632 2e0be03 a40135d c8f0059 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import gradio as gr
import pandas as pd
import gspread
from gspread_dataframe import set_with_dataframe
from oauth2client.service_account import ServiceAccountCredentials
from datetime import datetime, timedelta
# -------------------- CONFIG --------------------
SHEET_URL = "https://docs.google.com/spreadsheets/d/1if4KoVQvw5ZbhknfdZbzMkcTiPfsD6bz9V3a1th-bwQ"
CREDS_JSON = "deep-mile-461309-t8-0e90103411e0.json"
# -------------------- AUTH --------------------
scope = ["https://spreadsheets.google.com/feeds","https://www.googleapis.com/auth/drive"]
creds = ServiceAccountCredentials.from_json_keyfile_name(CREDS_JSON, scope)
client = gspread.authorize(creds)
# -------------------- SHEET LOADING --------------------
def normalize_columns(df):
df.columns = df.columns.str.strip().str.title()
return df
def load_sheet_df(tab_name):
"""Load a worksheet into a normalized DataFrame."""
try:
ws = client.open_by_url(SHEET_URL).worksheet(tab_name)
df = pd.DataFrame(ws.get_all_records())
return normalize_columns(df)
except Exception as e:
return pd.DataFrame([{"Error": str(e)}])
def find_rep_column(df):
"""Return the first column whose name contains 'rep' (case-insensitive)."""
for c in df.columns:
if "rep" in c.lower():
return c
return None
def rep_options(tab_name):
"""Build a dropdown list of all reps in the given sheet."""
df = load_sheet_df(tab_name)
rep_col = find_rep_column(df)
if rep_col:
return sorted(df[rep_col].dropna().unique().tolist())
return []
# -------------------- DATE FILTERS --------------------
def get_current_week_range():
today = datetime.now()
start = today - timedelta(days=today.weekday())
return start.date(), (start + timedelta(days=6)).date()
def filter_week(df, date_col, rep_col, rep):
df[date_col] = pd.to_datetime(df[date_col], errors="coerce").dt.date
start, end = get_current_week_range()
out = df[(df[date_col] >= start) & (df[date_col] <= end)]
if rep and rep_col in out.columns:
out = out[out[rep_col] == rep]
return out
def filter_date(df, date_col, rep_col, y,m,d, rep):
try:
target = datetime(int(y), int(m), int(d)).date()
except:
return pd.DataFrame([{"Error":"Invalid date"}])
df[date_col] = pd.to_datetime(df[date_col], errors="coerce").dt.date
out = df[df[date_col] == target]
if rep and rep_col in out.columns:
out = out[out[rep_col] == rep]
return out
# -------------------- CALLS REPORT --------------------
def get_calls(rep=None):
df = load_sheet_df("Calls")
if "Call Date" not in df.columns:
return pd.DataFrame([{"Error":"Missing 'Call Date'"}])
rep_col = find_rep_column(df)
return filter_week(df, "Call Date", rep_col, rep)
def get_calls_summary(rep=None):
df = get_calls(rep)
if "Error" in df.columns or df.empty:
return df
rep_col = find_rep_column(df)
return df.groupby(rep_col).size().reset_index(name="Count")
def search_calls_by_date(y,m,d,rep):
df = load_sheet_df("Calls")
if "Call Date" not in df.columns:
return pd.DataFrame([{"Error":"Missing 'Call Date'"}])
rep_col = find_rep_column(df)
return filter_date(df, "Call Date", rep_col, y,m,d, rep)
# -------------------- APPOINTMENTS REPORT --------------------
def get_appointments(rep=None):
df = load_sheet_df("Appointments")
if "Appointment Date" not in df.columns:
return pd.DataFrame([{"Error":"Missing 'Appointment Date'"}])
rep_col = find_rep_column(df)
return filter_week(df, "Appointment Date", rep_col, rep)
def get_appointments_summary(rep=None):
df = get_appointments(rep)
if "Error" in df.columns or df.empty:
return df
rep_col = find_rep_column(df)
return df.groupby(rep_col).size().reset_index(name="Count")
def search_appointments_by_date(y,m,d,rep):
df = load_sheet_df("Appointments")
if "Appointment Date" not in df.columns:
return pd.DataFrame([{"Error":"Missing 'Appointment Date'"}])
rep_col = find_rep_column(df)
return filter_date(df, "Appointment Date", rep_col, y,m,d, rep)
# -------------------- APPOINTED LEADS --------------------
def get_leads_detail():
df = load_sheet_df("AllocatedLeads")
return df
def get_leads_summary():
df = get_leads_detail()
rep_col = find_rep_column(df) or "Assigned Rep"
if rep_col not in df.columns:
return pd.DataFrame([{"Error":"Missing rep column in leads"}])
return df.groupby(rep_col).size().reset_index(name="Leads Count")
# -------------------- INSIGHTS --------------------
def compute_insights():
calls = get_calls()
appts = get_appointments()
leads = get_leads_detail()
def top(df, col):
if "Error" in df.columns or df.empty or col not in df.columns:
return "N/A"
s = df.groupby(col).size()
return s.idxmax() if not s.empty else "N/A"
rep_calls = find_rep_column(calls)
rep_appts = find_rep_column(appts)
rep_leads = find_rep_column(leads)
return pd.DataFrame([
{"Metric":"Most Calls This Week", "Rep": top(calls, rep_calls)},
{"Metric":"Most Appointments This Week", "Rep": top(appts, rep_appts)},
{"Metric":"Most Leads Allocated", "Rep": top(leads, rep_leads)},
])
# -------------------- USER MANAGEMENT --------------------
def load_users():
df = load_sheet_df("Users")
wanted = [
"Id","Email","Name","Business","Role",
"Daily Phone Call Target","Daily Phone Appointment Target",
"Daily Quote Number Target","Daily Quote Revenue Target",
"Weekly Phone Call Target","Weekly Phone Appointment Target",
"Weekly Quote Number Target","Weekly Quote Revenue Target",
"Monthly Phone Call Target","Monthly Phone Appointment Target",
"Monthly Quote Number Target","Monthly Quote Revenue Target",
"Monthly Sales Revenue Target"
]
cols = [c for c in wanted if c in df.columns]
return df[cols]
def save_users(df):
ws = client.open_by_url(SHEET_URL).worksheet("Users")
ws.clear()
set_with_dataframe(ws, df)
return "β
Users saved!"
# -------------------- GRADIO LAYOUT --------------------
with gr.Blocks(title="Graffiti Admin Dashboard") as app:
gr.Markdown("# π Graffiti Admin Dashboard")
# Calls Tab
with gr.Tab("Calls Report"):
rep_calls = gr.Dropdown("Optional Rep Filter",
choices=rep_options("Calls"), allow_custom_value=True)
calls_btn = gr.Button("Load Current Week Calls")
calls_sum = gr.Dataframe(label="π Calls by Rep")
calls_det = gr.Dataframe(label="π Detailed Calls")
calls_btn.click(lambda r: (get_calls_summary(r), get_calls(r)),
inputs=rep_calls, outputs=[calls_sum, calls_det])
gr.Markdown("### π Search Calls by Specific Date")
y1,m1,d1 = gr.Textbox("Year"), gr.Textbox("Month"), gr.Textbox("Day")
rep1 = gr.Dropdown("Optional Rep Filter",
choices=rep_options("Calls"), allow_custom_value=True)
calls_dt_btn = gr.Button("Search Calls by Date")
calls_dt_tbl = gr.Dataframe()
calls_dt_btn.click(fn=search_calls_by_date,
inputs=[y1,m1,d1,rep1], outputs=calls_dt_tbl)
# Appointments Tab
with gr.Tab("Appointments Report"):
rep_appt = gr.Dropdown("Optional Rep Filter",
choices=rep_options("Appointments"), allow_custom_value=True)
appt_btn = gr.Button("Load Current Week Appointments")
appt_sum = gr.Dataframe(label="π Appts by Rep")
appt_det = gr.Dataframe(label="π Detailed Appts")
appt_btn.click(lambda r: (get_appointments_summary(r), get_appointments(r)),
inputs=rep_appt, outputs=[appt_sum, appt_det])
gr.Markdown("### π Search Appts by Specific Date")
y2,m2,d2 = gr.Textbox("Year"), gr.Textbox("Month"), gr.Textbox("Day")
rep2 = gr.Dropdown("Optional Rep Filter",
choices=rep_options("Appointments"), allow_custom_value=True)
appt_dt_btn = gr.Button("Search Appointments by Date")
appt_dt_sum = gr.Dataframe(label="π Appts Summary by Rep")
appt_dt_det = gr.Dataframe(label="π Detailed Appts")
appt_dt_btn.click(
lambda y,m,d,r: (
(lambda df: df.groupby(find_rep_column(df)).size().reset_index(name="Count"))
(search_appointments_by_date(y,m,d,r)),
search_appointments_by_date(y,m,d,r)
),
inputs=[y2,m2,d2,rep2],
outputs=[appt_dt_sum, appt_dt_det]
)
# Appointed Leads Tab
with gr.Tab("Appointed Leads"):
leads_btn = gr.Button("View Appointed Leads")
leads_sum = gr.Dataframe(label="π Leads Count by Rep")
leads_det = gr.Dataframe(label="π Detailed Leads")
leads_btn.click(lambda: (get_leads_summary(), get_leads_detail()),
outputs=[leads_sum, leads_det])
# Insights Tab
with gr.Tab("Insights"):
ins_btn = gr.Button("Generate Insights")
ins_tbl = gr.Dataframe()
ins_btn.click(fn=compute_insights, outputs=ins_tbl)
# User Management Tab
with gr.Tab("User Management"):
gr.Markdown("## π€ Manage Users\nEdit/add/remove rows, then click **Save Users**.")
users_df = gr.Dataframe(load_users(), interactive=True)
save_btn = gr.Button("Save Users")
save_stat= gr.Textbox()
save_btn.click(fn=save_users, inputs=users_df, outputs=save_stat)
app.launch()
|