Spaces:
Sleeping
Sleeping
File size: 10,835 Bytes
06faff1 44e7320 9424917 93be3f3 1051212 9424917 c8f0059 d3b24ed 7074721 06faff1 9424917 d3b24ed 9424917 dfbe477 01139ed d3b24ed 9424917 d3b24ed c8f0059 d3b24ed 2e0be03 9424917 c8f0059 1051212 9424917 d3b24ed 9424917 2e0be03 d3b24ed 06faff1 9424917 1051212 d3b24ed 9424917 2e0be03 9424917 2e0be03 6475632 2e0be03 9424917 2e0be03 c8f0059 b1c35dc bc61590 a40135d bc61590 9424917 2e0be03 9424917 2e0be03 c8f0059 9424917 0222536 9424917 c8f0059 9424917 0222536 9424917 c8f0059 9424917 1c4332a d3b24ed 9424917 c8f0059 9424917 1c4332a 6903ce6 d3b24ed 6903ce6 9424917 d3b24ed 6903ce6 2e0be03 6475632 b1c35dc 9424917 6475632 9424917 6475632 9424917 a40135d 1c4332a 9424917 b1c35dc 01139ed 9424917 01139ed 9424917 a40135d c8f0059 01139ed a40135d 9424917 2e0be03 06faff1 d3b24ed 2f4c490 d3b24ed 9424917 d3b24ed 9424917 d3b24ed 2f4c490 d3b24ed 9424917 d3b24ed 9424917 d3b24ed 9424917 d3b24ed 9424917 d3b24ed 9424917 d3b24ed 9424917 d3b24ed 9424917 d3b24ed 2f4c490 d3b24ed c8f0059 d3b24ed 6903ce6 9424917 6903ce6 d3b24ed a40135d d3b24ed 9424917 a40135d 9424917 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
import gradio as gr
import pandas as pd
import gspread
from gspread.exceptions import WorksheetNotFound
from oauth2client.service_account import ServiceAccountCredentials
from datetime import datetime, timedelta
from gspread_dataframe import set_with_dataframe
# -------------------- CONFIG --------------------
SHEET_URL = "https://docs.google.com/spreadsheets/d/1if4KoVQvw5ZbhknfdZbzMkcTiPfsD6bz9V3a1th-bwQ"
USER_SHEET_NAME = "Users" # <-- must match (or contain) your βUsersβ tab
# -------------------- AUTH --------------------
scope = [
"https://spreadsheets.google.com/feeds",
"https://www.googleapis.com/auth/drive",
]
creds = ServiceAccountCredentials.from_json_keyfile_name(
"deep-mile-461309-t8-0e90103411e0.json", scope
)
client = gspread.authorize(creds)
# -------------------- FUZZY WORKSHEET LOOKUP --------------------
def open_ws_by_substring(substr: str):
"""
Try exact match, then fall back to the first worksheet
whose title contains `substr` (case-insensitive).
"""
sh = client.open_by_url(SHEET_URL)
try:
return sh.worksheet(substr)
except WorksheetNotFound:
for ws in sh.worksheets():
if substr.lower() in ws.title.lower():
return ws
raise WorksheetNotFound(f"No tab matching '{substr}'")
# -------------------- SHEET UTILS --------------------
def normalize_columns(df: pd.DataFrame) -> pd.DataFrame:
df.columns = df.columns.str.strip().str.title()
return df
def load_sheet(sheet_name: str) -> pd.DataFrame:
"""Return a DataFrame of the entire sheet, or an Error row."""
try:
ws = open_ws_by_substring(sheet_name)
df = pd.DataFrame(ws.get_all_records())
return normalize_columns(df)
except Exception as e:
return pd.DataFrame([{"Error": str(e)}])
def load_sheet_df(sheet_name: str) -> pd.DataFrame:
"""Like load_sheet, but lets WorksheetNotFound bubble up."""
ws = open_ws_by_substring(sheet_name)
df = pd.DataFrame(ws.get_all_records())
return normalize_columns(df)
# -------------------- DATE FILTER HELPERS --------------------
def get_current_week_range():
today = datetime.now().date()
start = today - timedelta(days=today.weekday())
end = start + timedelta(days=6)
return start, end
def filter_week(df, date_col, rep_col=None, rep=None):
df[date_col] = pd.to_datetime(df[date_col], errors="coerce").dt.date
start, end = get_current_week_range()
out = df[(df[date_col] >= start) & (df[date_col] <= end)]
if rep:
out = out[out[rep_col] == rep]
return out
def filter_date(df, date_col, rep_col, y, m, d, rep):
try:
target = datetime(int(y), int(m), int(d)).date()
except:
return pd.DataFrame([{"Error": "Invalid date"}])
df[date_col] = pd.to_datetime(df[date_col], errors="coerce").dt.date
out = df[df[date_col] == target]
if rep:
out = out[out[rep_col] == rep]
return out
# -------------------- REPORT FUNCTIONS --------------------
def get_calls(rep=None):
df = load_sheet("Calls")
if "Call Date" not in df.columns:
return df
return filter_week(df, "Call Date", "Rep", rep)
def search_calls_by_date(y, m, d, rep):
df = load_sheet("Calls")
if "Call Date" not in df.columns:
return df
return filter_date(df, "Call Date", "Rep", y, m, d, rep)
def get_appointments(rep=None):
df = load_sheet("Appointments")
if "Appointment Date" not in df.columns:
return df
return filter_week(df, "Appointment Date", "Rep", rep)
def search_appointments_by_date(y, m, d, rep):
df = load_sheet("Appointments")
if "Appointment Date" not in df.columns:
return df
return filter_date(df, "Appointment Date", "Rep", y, m, d, rep)
def get_leads_detail():
return load_sheet("AllocatedLeads")
def get_leads_summary():
df = get_leads_detail()
if "Error" in df.columns:
return df
return df.groupby("Assigned Rep")\
.size()\
.reset_index(name="Leads Count")
def compute_insights():
calls = get_calls()
appts = get_appointments()
leads = get_leads_detail()
def top_rep(df, col):
if "Error" in df.columns or df.empty or col not in df.columns:
return "N/A"
return df.groupby(col).size().idxmax()
data = [
{"Metric": "Most Calls This Week", "Rep": top_rep(calls, "Rep")},
{"Metric": "Most Appointments This Week", "Rep": top_rep(appts, "Rep")},
{"Metric": "Most Leads Allocated", "Rep": top_rep(leads, "Assigned Rep")},
]
return pd.DataFrame(data)
def rep_options(sheet, col):
df = load_sheet(sheet)
if col in df.columns:
return sorted(df[col].dropna().unique().tolist())
return []
# -------------------- USER MANAGEMENT --------------------
def load_users() -> pd.DataFrame:
cols = [
"ID","Email","Name","Business","Role",
"Daily Phone Call Target","Daily Phone Appointment Target",
"Daily Quote Number Target","Daily Quote Revenue Target",
"Weekly Phone Call Target","Weekly Phone Appointment Target",
"Weekly Quote Number Target","Weekly Quote Revenue Target",
"Monthly Phone Call Target","Monthly Phone Appointment Target",
"Monthly Quote Number Target","Monthly Quote Revenue Target",
"Monthly Sales Revenue Target"
]
try:
return load_sheet_df(USER_SHEET_NAME)
except WorksheetNotFound:
return pd.DataFrame(columns=cols)
def save_users(df: pd.DataFrame):
ws = client.open_by_url(SHEET_URL).worksheet(USER_SHEET_NAME)
ws.clear()
set_with_dataframe(ws, df)
return "β
Users saved!"
# -------------------- BUILD UI --------------------
with gr.Blocks(title="Graffiti Admin Dashboard") as app:
gr.Markdown("# π Graffiti Admin Dashboard")
# -- Calls Report --
with gr.Tab("Calls Report"):
rep_calls = gr.Dropdown(choices=rep_options("Calls","Rep"),
label="Optional Rep Filter",
allow_custom_value=True)
calls_btn = gr.Button("Load Current Week Calls")
with gr.Row():
with gr.Column():
calls_sum = gr.Dataframe(label="π Calls by Rep")
with gr.Column():
calls_det = gr.Dataframe(label="π Detailed Calls")
calls_btn.click(
fn=lambda r: (
get_calls(r).groupby("Rep")
.size()
.reset_index(name="Count"),
get_calls(r)
),
inputs=rep_calls,
outputs=[calls_sum, calls_det]
)
gr.Markdown("### π Search Calls by Specific Date")
y1 = gr.Textbox(label="Year")
m1 = gr.Textbox(label="Month")
d1 = gr.Textbox(label="Day")
rep1 = gr.Dropdown(choices=rep_options("Calls","Rep"),
label="Optional Rep Filter",
allow_custom_value=True)
calls_date_btn = gr.Button("Search Calls by Date")
with gr.Row():
with gr.Column():
calls_date_sum = gr.Dataframe(label="π Calls by Rep on Date")
with gr.Column():
calls_date_det = gr.Dataframe(label="π Detailed Calls on Date")
calls_date_btn.click(
fn=lambda y,m,d,r: (
search_calls_by_date(y,m,d,r)
.groupby("Rep")
.size()
.reset_index(name="Count"),
search_calls_by_date(y,m,d,r)
),
inputs=[y1,m1,d1,rep1],
outputs=[calls_date_sum, calls_date_det]
)
# -- Appointments Report --
with gr.Tab("Appointments Report"):
rep_appt = gr.Dropdown(choices=rep_options("Appointments","Rep"),
label="Optional Rep Filter",
allow_custom_value=True)
appt_btn = gr.Button("Load Current Week Appointments")
with gr.Row():
with gr.Column():
appt_sum = gr.Dataframe(label="π Weekly Appointments Summary by Rep")
with gr.Column():
appt_det = gr.Dataframe(label="π Detailed Appointments")
appt_btn.click(
fn=lambda r: (
get_appointments(r)
.groupby("Rep")
.size()
.reset_index(name="Count"),
get_appointments(r)
),
inputs=rep_appt,
outputs=[appt_sum, appt_det]
)
gr.Markdown("### π Search Appointments by Specific Date")
y2 = gr.Textbox(label="Year")
m2 = gr.Textbox(label="Month")
d2 = gr.Textbox(label="Day")
rep2 = gr.Dropdown(choices=rep_options("Appointments","Rep"),
label="Optional Rep Filter",
allow_custom_value=True)
appt_date_btn = gr.Button("Search Appointments by Date")
with gr.Row():
with gr.Column():
appt_date_sum = gr.Dataframe(label="π Appts by Rep on Date")
with gr.Column():
appt_date_det = gr.Dataframe(label="π Detailed Appts on Date")
appt_date_btn.click(
fn=lambda y,m,d,r: (
search_appointments_by_date(y,m,d,r)
.groupby("Rep")
.size()
.reset_index(name="Count"),
search_appointments_by_date(y,m,d,r)
),
inputs=[y2,m2,d2,rep2],
outputs=[appt_date_sum, appt_date_det]
)
# -- Appointed Leads --
with gr.Tab("Appointed Leads"):
leads_btn = gr.Button("View Appointed Leads")
with gr.Row():
with gr.Column():
leads_sum = gr.Dataframe(label="π Leads Count by Rep")
with gr.Column():
leads_det = gr.Dataframe(label="π Detailed Leads")
leads_btn.click(
fn=lambda: (get_leads_summary(), get_leads_detail()),
outputs=[leads_sum, leads_det]
)
# -- Insights --
with gr.Tab("Insights"):
insights_btn = gr.Button("Generate Insights")
insights_tbl = gr.Dataframe()
insights_btn.click(fn=compute_insights, outputs=insights_tbl)
# -- User Management --
with gr.Tab("User Management"):
gr.Markdown("### π Manage Users \nEdit the grid and click **Save Users**.")
users_tbl = gr.Dataframe(value=load_users(), interactive=True)
save_btn = gr.Button("Save Users")
save_msg = gr.Textbox(interactive=False)
save_btn.click(fn=save_users, inputs=users_tbl, outputs=save_msg)
app.launch()
|