Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pandas as pd | |
import gspread | |
from oauth2client.service_account import ServiceAccountCredentials | |
from datetime import datetime, timedelta | |
# -------------------- AUTH -------------------- | |
scope = ["https://spreadsheets.google.com/feeds", "https://www.googleapis.com/auth/drive"] | |
creds = ServiceAccountCredentials.from_json_keyfile_name("deep-mile-461309-t8-0e90103411e0.json", scope) | |
client = gspread.authorize(creds) | |
sheet_url = "https://docs.google.com/spreadsheets/d/1if4KoVQvw5ZbhknfdZbzMkcTiPfsD6bz9V3a1th-bwQ" | |
# -------------------- UTILS -------------------- | |
def normalize_columns(df): | |
df.columns = df.columns.str.strip().str.title() # e.g. “appointment date ” → “Appointment Date” | |
return df | |
def load_sheet(sheet_name): | |
try: | |
sheet = client.open_by_url(sheet_url).worksheet(sheet_name) | |
df = pd.DataFrame(sheet.get_all_records()) | |
df = normalize_columns(df) | |
return df | |
except Exception as e: | |
return pd.DataFrame([{"Error": str(e)}]) | |
def get_current_week_range(): | |
today = datetime.now() | |
start = today - timedelta(days=today.weekday()) | |
end = start + timedelta(days=6) | |
return start.date(), end.date() | |
def filter_week(df, date_column, rep_column=None, rep=None): | |
df[date_column] = pd.to_datetime(df[date_column], errors='coerce').dt.date | |
start, end = get_current_week_range() | |
filtered = df[(df[date_column] >= start) & (df[date_column] <= end)] | |
if rep: | |
filtered = filtered[filtered[rep_column] == rep] | |
return filtered | |
def filter_date(df, date_column, rep_column, y, m, d, rep): | |
try: | |
target = datetime(int(y), int(m), int(d)).date() | |
except: | |
return pd.DataFrame([{"Error": "Invalid date input"}]) | |
df[date_column] = pd.to_datetime(df[date_column], errors='coerce').dt.date | |
filtered = df[df[date_column] == target] | |
if rep: | |
filtered = filtered[filtered[rep_column] == rep] | |
return filtered | |
# -------------------- REPORT FUNCTIONS -------------------- | |
def get_calls(rep=None): | |
df = load_sheet("Calls") | |
if "Call Date" not in df.columns: | |
return pd.DataFrame([{"Error": "Missing 'Call Date' column"}]) | |
return filter_week(df, "Call Date", "Rep", rep) | |
def get_appointments(rep=None): | |
df = load_sheet("Appointments") | |
if "Appointment Date" not in df.columns: | |
return pd.DataFrame([{"Error": "Missing 'Appointment Date' column"}]) | |
return filter_week(df, "Appointment Date", "Rep", rep) | |
def search_calls_by_date(y, m, d, rep): | |
df = load_sheet("Calls") | |
if "Call Date" not in df.columns: | |
return pd.DataFrame([{"Error": "Missing 'Call Date' column"}]) | |
return filter_date(df, "Call Date", "Rep", y, m, d, rep) | |
def search_appointments_by_date(y, m, d, rep): | |
df = load_sheet("Appointments") | |
if "Appointment Date" not in df.columns: | |
return pd.DataFrame([{"Error": "Missing 'Appointment Date' column"}]) | |
return filter_date(df, "Appointment Date", "Rep", y, m, d, rep) | |
def get_leads_detail(): | |
df = load_sheet("AllocatedLeads") | |
# normalize expected names if necessary: | |
df = df.rename(columns={"Assigned Rep": "Assigned Rep", "Company Name": "Company Name"}) | |
if "Assigned Rep" not in df.columns or "Company Name" not in df.columns: | |
return pd.DataFrame([{"Error": "Missing 'Assigned Rep' or 'Company Name' column"}]) | |
return df | |
def get_leads_summary(): | |
df = get_leads_detail() | |
if "Error" in df.columns: | |
return df | |
# count number of leads per rep | |
summary = df.groupby("Assigned Rep").size().reset_index(name="Leads Count") | |
return summary | |
# -------------------- INSIGHTS (Top Performers) -------------------- | |
def compute_insights(): | |
calls = get_calls() | |
appts = get_appointments() | |
leads = get_leads_detail() | |
top_calls = calls.groupby("Rep").size().idxmax() if not calls.empty else "N/A" | |
top_appts = appts.groupby("Rep").size().idxmax() if not appts.empty else "N/A" | |
top_leads = leads.groupby("Assigned Rep").size().idxmax() if "Assigned Rep" in leads.columns else "N/A" | |
insights = pd.DataFrame([ | |
{"Metric": "Most Calls This Week", "Rep": top_calls}, | |
{"Metric": "Most Appointments This Week", "Rep": top_appts}, | |
{"Metric": "Most Leads Allocated", "Rep": top_leads}, | |
]) | |
return insights | |
# -------------------- DROPDOWN OPTIONS -------------------- | |
def rep_options(sheet_name, rep_col): | |
df = load_sheet(sheet_name) | |
if rep_col in df.columns: | |
return sorted(df[rep_col].dropna().unique().tolist()) | |
return [] | |
# -------------------- UI LAYOUT -------------------- | |
with gr.Blocks(title="Graffiti Admin Dashboard") as app: | |
gr.Markdown("# 📆 Graffiti Admin Dashboard") | |
with gr.Tab("Calls Report"): | |
rep_calls = gr.Dropdown(label="Optional Rep Filter", choices=rep_options("Calls", "Rep"), allow_custom_value=True) | |
calls_btn = gr.Button("Load Current Week Calls") | |
calls_table = gr.Dataframe() | |
calls_btn.click(fn=get_calls, inputs=rep_calls, outputs=calls_table) | |
gr.Markdown("### 🔍 Search Calls by Specific Date") | |
y1, m1, d1 = gr.Textbox(label="Year"), gr.Textbox(label="Month"), gr.Textbox(label="Day") | |
rep1 = gr.Dropdown(label="Optional Rep Filter", choices=rep_options("Calls", "Rep"), allow_custom_value=True) | |
calls_date_btn = gr.Button("Search Calls by Date") | |
calls_date_table = gr.Dataframe() | |
calls_date_btn.click(fn=search_calls_by_date, inputs=[y1, m1, d1, rep1], outputs=calls_date_table) | |
with gr.Tab("Appointments Report"): | |
rep_appt = gr.Dropdown(label="Optional Rep Filter", choices=rep_options("Appointments", "Rep"), allow_custom_value=True) | |
appt_btn = gr.Button("Load Current Week Appointments") | |
appt_summary = gr.Dataframe(label="📊 Weekly Appointments Summary by Rep") | |
appt_table = gr.Dataframe() | |
appt_btn.click( | |
fn=lambda rep: (get_appointments(rep).groupby("Rep").size().reset_index(name="Count"), | |
get_appointments(rep)), | |
inputs=rep_appt, | |
outputs=[appt_summary, appt_table] | |
) | |
gr.Markdown("### 🔍 Search Appointments by Specific Date") | |
y2, m2, d2 = gr.Textbox(label="Year"), gr.Textbox(label="Month"), gr.Textbox(label="Day") | |
rep2 = gr.Dropdown(label="Optional Rep Filter", choices=rep_options("Appointments", "Rep"), allow_custom_value=True) | |
appt_date_btn = gr.Button("Search Appointments by Date") | |
appt_date_summary = gr.Dataframe(label="📊 Appointments Summary for Date by Rep") | |
appt_date_table = gr.Dataframe() | |
appt_date_btn.click( | |
fn=lambda y,m,d,rep: ( | |
search_appointments_by_date(y,m,d,rep).groupby("Rep").size().reset_index(name="Count"), | |
search_appointments_by_date(y,m,d,rep) | |
), | |
inputs=[y2, m2, d2, rep2], | |
outputs=[appt_date_summary, appt_date_table] | |
) | |
with gr.Tab("Appointed Leads"): | |
leads_btn = gr.Button("View Appointed Leads") | |
leads_summary= gr.Dataframe(label="📊 Leads Count by Rep") | |
leads_detail = gr.Dataframe(label="🔎 Detailed Leads") | |
leads_btn.click( | |
fn=lambda: (get_leads_summary(), get_leads_detail()), | |
outputs=[leads_summary, leads_detail] | |
) | |
with gr.Tab("Insights"): | |
insights_btn = gr.Button("Generate Insights") | |
insights_tbl = gr.Dataframe() | |
insights_btn.click(fn=compute_insights, outputs=insights_tbl) | |
app.launch() | |