IAMTFRMZA's picture
Update app.py
0222536 verified
raw
history blame
7.61 kB
import gradio as gr
import pandas as pd
import gspread
from oauth2client.service_account import ServiceAccountCredentials
from datetime import datetime, timedelta
# -------------------- AUTH --------------------
scope = ["https://spreadsheets.google.com/feeds", "https://www.googleapis.com/auth/drive"]
creds = ServiceAccountCredentials.from_json_keyfile_name("deep-mile-461309-t8-0e90103411e0.json", scope)
client = gspread.authorize(creds)
sheet_url = "https://docs.google.com/spreadsheets/d/1if4KoVQvw5ZbhknfdZbzMkcTiPfsD6bz9V3a1th-bwQ"
# -------------------- UTILS --------------------
def normalize_columns(df):
df.columns = df.columns.str.strip().str.title() # e.g. “appointment date ” → “Appointment Date”
return df
def load_sheet(sheet_name):
try:
sheet = client.open_by_url(sheet_url).worksheet(sheet_name)
df = pd.DataFrame(sheet.get_all_records())
df = normalize_columns(df)
return df
except Exception as e:
return pd.DataFrame([{"Error": str(e)}])
def get_current_week_range():
today = datetime.now()
start = today - timedelta(days=today.weekday())
end = start + timedelta(days=6)
return start.date(), end.date()
def filter_week(df, date_column, rep_column=None, rep=None):
df[date_column] = pd.to_datetime(df[date_column], errors='coerce').dt.date
start, end = get_current_week_range()
filtered = df[(df[date_column] >= start) & (df[date_column] <= end)]
if rep:
filtered = filtered[filtered[rep_column] == rep]
return filtered
def filter_date(df, date_column, rep_column, y, m, d, rep):
try:
target = datetime(int(y), int(m), int(d)).date()
except:
return pd.DataFrame([{"Error": "Invalid date input"}])
df[date_column] = pd.to_datetime(df[date_column], errors='coerce').dt.date
filtered = df[df[date_column] == target]
if rep:
filtered = filtered[filtered[rep_column] == rep]
return filtered
# -------------------- REPORT FUNCTIONS --------------------
def get_calls(rep=None):
df = load_sheet("Calls")
if "Call Date" not in df.columns:
return pd.DataFrame([{"Error": "Missing 'Call Date' column"}])
return filter_week(df, "Call Date", "Rep", rep)
def get_appointments(rep=None):
df = load_sheet("Appointments")
if "Appointment Date" not in df.columns:
return pd.DataFrame([{"Error": "Missing 'Appointment Date' column"}])
return filter_week(df, "Appointment Date", "Rep", rep)
def search_calls_by_date(y, m, d, rep):
df = load_sheet("Calls")
if "Call Date" not in df.columns:
return pd.DataFrame([{"Error": "Missing 'Call Date' column"}])
return filter_date(df, "Call Date", "Rep", y, m, d, rep)
def search_appointments_by_date(y, m, d, rep):
df = load_sheet("Appointments")
if "Appointment Date" not in df.columns:
return pd.DataFrame([{"Error": "Missing 'Appointment Date' column"}])
return filter_date(df, "Appointment Date", "Rep", y, m, d, rep)
def get_leads_detail():
df = load_sheet("AllocatedLeads")
# normalize expected names if necessary:
df = df.rename(columns={"Assigned Rep": "Assigned Rep", "Company Name": "Company Name"})
if "Assigned Rep" not in df.columns or "Company Name" not in df.columns:
return pd.DataFrame([{"Error": "Missing 'Assigned Rep' or 'Company Name' column"}])
return df
def get_leads_summary():
df = get_leads_detail()
if "Error" in df.columns:
return df
# count number of leads per rep
summary = df.groupby("Assigned Rep").size().reset_index(name="Leads Count")
return summary
# -------------------- INSIGHTS (Top Performers) --------------------
def compute_insights():
calls = get_calls()
appts = get_appointments()
leads = get_leads_detail()
top_calls = calls.groupby("Rep").size().idxmax() if not calls.empty else "N/A"
top_appts = appts.groupby("Rep").size().idxmax() if not appts.empty else "N/A"
top_leads = leads.groupby("Assigned Rep").size().idxmax() if "Assigned Rep" in leads.columns else "N/A"
insights = pd.DataFrame([
{"Metric": "Most Calls This Week", "Rep": top_calls},
{"Metric": "Most Appointments This Week", "Rep": top_appts},
{"Metric": "Most Leads Allocated", "Rep": top_leads},
])
return insights
# -------------------- DROPDOWN OPTIONS --------------------
def rep_options(sheet_name, rep_col):
df = load_sheet(sheet_name)
if rep_col in df.columns:
return sorted(df[rep_col].dropna().unique().tolist())
return []
# -------------------- UI LAYOUT --------------------
with gr.Blocks(title="Graffiti Admin Dashboard") as app:
gr.Markdown("# 📆 Graffiti Admin Dashboard")
with gr.Tab("Calls Report"):
rep_calls = gr.Dropdown(label="Optional Rep Filter", choices=rep_options("Calls", "Rep"), allow_custom_value=True)
calls_btn = gr.Button("Load Current Week Calls")
calls_table = gr.Dataframe()
calls_btn.click(fn=get_calls, inputs=rep_calls, outputs=calls_table)
gr.Markdown("### 🔍 Search Calls by Specific Date")
y1, m1, d1 = gr.Textbox(label="Year"), gr.Textbox(label="Month"), gr.Textbox(label="Day")
rep1 = gr.Dropdown(label="Optional Rep Filter", choices=rep_options("Calls", "Rep"), allow_custom_value=True)
calls_date_btn = gr.Button("Search Calls by Date")
calls_date_table = gr.Dataframe()
calls_date_btn.click(fn=search_calls_by_date, inputs=[y1, m1, d1, rep1], outputs=calls_date_table)
with gr.Tab("Appointments Report"):
rep_appt = gr.Dropdown(label="Optional Rep Filter", choices=rep_options("Appointments", "Rep"), allow_custom_value=True)
appt_btn = gr.Button("Load Current Week Appointments")
appt_summary = gr.Dataframe(label="📊 Weekly Appointments Summary by Rep")
appt_table = gr.Dataframe()
appt_btn.click(
fn=lambda rep: (get_appointments(rep).groupby("Rep").size().reset_index(name="Count"),
get_appointments(rep)),
inputs=rep_appt,
outputs=[appt_summary, appt_table]
)
gr.Markdown("### 🔍 Search Appointments by Specific Date")
y2, m2, d2 = gr.Textbox(label="Year"), gr.Textbox(label="Month"), gr.Textbox(label="Day")
rep2 = gr.Dropdown(label="Optional Rep Filter", choices=rep_options("Appointments", "Rep"), allow_custom_value=True)
appt_date_btn = gr.Button("Search Appointments by Date")
appt_date_summary = gr.Dataframe(label="📊 Appointments Summary for Date by Rep")
appt_date_table = gr.Dataframe()
appt_date_btn.click(
fn=lambda y,m,d,rep: (
search_appointments_by_date(y,m,d,rep).groupby("Rep").size().reset_index(name="Count"),
search_appointments_by_date(y,m,d,rep)
),
inputs=[y2, m2, d2, rep2],
outputs=[appt_date_summary, appt_date_table]
)
with gr.Tab("Appointed Leads"):
leads_btn = gr.Button("View Appointed Leads")
leads_summary= gr.Dataframe(label="📊 Leads Count by Rep")
leads_detail = gr.Dataframe(label="🔎 Detailed Leads")
leads_btn.click(
fn=lambda: (get_leads_summary(), get_leads_detail()),
outputs=[leads_summary, leads_detail]
)
with gr.Tab("Insights"):
insights_btn = gr.Button("Generate Insights")
insights_tbl = gr.Dataframe()
insights_btn.click(fn=compute_insights, outputs=insights_tbl)
app.launch()