IAMTFRMZA's picture
Update app.py
25ec218 verified
raw
history blame
8.22 kB
import gradio as gr
import pandas as pd
import gspread
from oauth2client.service_account import ServiceAccountCredentials
from datetime import datetime, timedelta
# -------------------- AUTH --------------------
scope = [
"https://spreadsheets.google.com/feeds",
"https://www.googleapis.com/auth/drive"
]
creds = ServiceAccountCredentials.from_json_keyfile_name(
"deep-mile-461309-t8-0e90103411e0.json",
scope
)
client = gspread.authorize(creds)
sheet_url = "https://docs.google.com/spreadsheets/d/1if4KoVQvw5ZbhknfdZbzMkcTiPfsD6bz9V3a1th-bwQ"
# -------------------- UTILS --------------------
def normalize_header(raw_header):
# strip and titleize
return [h.strip().title() for h in raw_header]
def load_sheet(sheet_name: str) -> pd.DataFrame:
ws = client.open_by_url(sheet_url).worksheet(sheet_name)
all_vals = ws.get_all_values()
if not all_vals or len(all_vals) < 2:
return pd.DataFrame()
header = normalize_header(all_vals[0])
rows = all_vals[1:]
df = pd.DataFrame(rows, columns=header)
return df
def get_current_week_range():
today = datetime.now()
start = today - timedelta(days=today.weekday())
end = start + timedelta(days=6)
return start.date(), end.date()
# -------------------- CALLS --------------------
def get_calls(rep=None):
df = load_sheet("Calls")
if "Call Date" not in df:
return pd.DataFrame([{"Error": "Missing 'Call Date' column"}])
df["Call Date"] = pd.to_datetime(df["Call Date"], errors="coerce").dt.date
start, end = get_current_week_range()
filtered = df[(df["Call Date"] >= start) & (df["Call Date"] <= end)]
if rep:
filtered = filtered[filtered["Rep"] == rep]
return filtered
def search_calls_by_date(y, m, d, rep):
df = load_sheet("Calls")
if "Call Date" not in df:
return pd.DataFrame([{"Error": "Missing 'Call Date' column"}])
try:
target = datetime(int(y), int(m), int(d)).date()
except:
return pd.DataFrame([{"Error": "Invalid date input"}])
df["Call Date"] = pd.to_datetime(df["Call Date"], errors="coerce").dt.date
filtered = df[df["Call Date"] == target]
if rep:
filtered = filtered[filtered["Rep"] == rep]
return filtered
# -------------------- APPOINTMENTS --------------------
def appointments_detail(rep=None):
df = load_sheet("Appointments")
if "Appointment Date" not in df:
return pd.DataFrame([{"Error": "Missing 'Appointment Date' column"}])
df["Appointment Date"] = pd.to_datetime(df["Appointment Date"], errors="coerce").dt.date
start, end = get_current_week_range()
filtered = df[(df["Appointment Date"] >= start) & (df["Appointment Date"] <= end)]
if rep:
filtered = filtered[filtered["Rep"] == rep]
return filtered
def appointments_summary(rep=None):
det = appointments_detail(rep)
if "Error" in det.columns:
return det
return det.groupby("Rep") \
.size() \
.reset_index(name="Appointment Count")
def search_appointments_by_date(y, m, d, rep):
df = load_sheet("Appointments")
if "Appointment Date" not in df:
return pd.DataFrame([{"Error": "Missing 'Appointment Date' column"}])
try:
target = datetime(int(y), int(m), int(d)).date()
except:
return pd.DataFrame([{"Error": "Invalid date input"}])
df["Appointment Date"] = pd.to_datetime(df["Appointment Date"], errors="coerce").dt.date
filtered = df[df["Appointment Date"] == target]
if rep:
filtered = filtered[filtered["Rep"] == rep]
return filtered
# -------------------- LEADS --------------------
def get_leads_detail():
df = load_sheet("AllocatedLeads")
if "Assigned Rep" not in df or "Company Name" not in df:
return pd.DataFrame([{"Error": "Missing 'Assigned Rep' or 'Company Name' column"}])
return df
def get_leads_summary():
df = get_leads_detail()
if "Error" in df.columns:
return df
return df.groupby("Assigned Rep") \
.size() \
.reset_index(name="Leads Count")
# -------------------- INSIGHTS --------------------
def compute_insights():
calls = get_calls()
appt = appointments_detail()
leads = get_leads_detail()
def top(df, col):
return df[col].value_counts().idxmax() if not df.empty else "N/A"
return pd.DataFrame([
{"Metric": "Most Calls This Week", "Rep": top(calls, "Rep")},
{"Metric": "Most Appointments This Week", "Rep": top(appt, "Rep")},
{"Metric": "Most Leads Allocated", "Rep": top(leads, "Assigned Rep")},
])
# -------------------- DROPDOWN OPTIONS --------------------
def rep_options(sheet_name, rep_col):
df = load_sheet(sheet_name)
return sorted(df[rep_col].dropna().unique().tolist()) if rep_col in df.columns else []
# -------------------- UI LAYOUT --------------------
with gr.Blocks(title="Graffiti Admin Dashboard") as app:
gr.Markdown("# πŸ“† Graffiti Admin Dashboard")
# Calls Report
with gr.Tab("Calls Report"):
rep_calls = gr.Dropdown("Optional Rep Filter",
choices=rep_options("Calls", "Rep"),
allow_custom_value=True)
calls_btn = gr.Button("Load Current Week Calls")
calls_table = gr.Dataframe()
calls_btn.click(fn=get_calls, inputs=rep_calls, outputs=calls_table)
gr.Markdown("### πŸ” Search Calls by Specific Date")
y1, m1, d1 = gr.Textbox("Year"), gr.Textbox("Month"), gr.Textbox("Day")
rep1 = gr.Dropdown("Optional Rep Filter",
choices=rep_options("Calls", "Rep"),
allow_custom_value=True)
calls_date_btn = gr.Button("Search Calls by Date")
calls_date_table = gr.Dataframe()
calls_date_btn.click(fn=search_calls_by_date,
inputs=[y1, m1, d1, rep1],
outputs=calls_date_table)
# Appointments Report
with gr.Tab("Appointments Report"):
rep_appt = gr.Dropdown("Optional Rep Filter",
choices=rep_options("Appointments", "Rep"),
allow_custom_value=True)
load_btn = gr.Button("Load Current Week Appointments")
appt_sum = gr.Dataframe(label="πŸ“Š Weekly Appointments Summary by Rep")
appt_det = gr.Dataframe(label="πŸ”Ž Detailed Appointments")
load_btn.click(
fn=lambda rep: (appointments_summary(rep), appointments_detail(rep)),
inputs=rep_appt,
outputs=[appt_sum, appt_det]
)
gr.Markdown("### πŸ” Search Appointments by Specific Date")
y2, m2, d2 = gr.Textbox("Year"), gr.Textbox("Month"), gr.Textbox("Day")
rep2 = gr.Dropdown("Optional Rep Filter",
choices=rep_options("Appointments", "Rep"),
allow_custom_value=True)
date_btn = gr.Button("Search Appointments by Date")
date_sum = gr.Dataframe(label="πŸ“Š Appointments Summary for Date by Rep")
date_det = gr.Dataframe(label="πŸ”Ž Detailed Appointments")
def by_date(y, m, d, rep):
df = search_appointments_by_date(y, m, d, rep)
if "Error" in df.columns:
return df, df
return (
df.groupby("Rep").size().reset_index(name="Appointment Count"),
df
)
date_btn.click(fn=by_date,
inputs=[y2, m2, d2, rep2],
outputs=[date_sum, date_det])
# Appointed Leads
with gr.Tab("Appointed Leads"):
leads_btn = gr.Button("View Appointed Leads")
leads_sum = gr.Dataframe(label="πŸ“Š Leads Count by Rep")
leads_det = gr.Dataframe(label="πŸ”Ž Detailed Leads")
leads_btn.click(
fn=lambda: (get_leads_summary(), get_leads_detail()),
outputs=[leads_sum, leads_det]
)
# Insights
with gr.Tab("Insights"):
insights_btn = gr.Button("Generate Insights")
insights_tbl = gr.Dataframe()
insights_btn.click(fn=compute_insights, outputs=insights_tbl)
app.launch()