Spaces:
Sleeping
Sleeping
File size: 4,039 Bytes
3eef18c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
import os
import re
import logging
import requests
import numpy as np
import faiss
from bs4 import BeautifulSoup
from sentence_transformers import SentenceTransformer
from langchain.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS as LangchainFAISS
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.llms import Together
from langchain.chains import RetrievalQA
import gradio as gr
# Set Together.ai API key
os.environ["TOGETHER_API_KEY"] = os.getenv("TOGETHER_API_KEY", "a36246d65d8290f43667350b364c5b6bb8562eb50a4b947eec5bd7e79f2dffc6")
# Logging setup
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Step 1: Load and chunk webpage
def fetch_webpage_text(url):
try:
response = requests.get(url)
response.raise_for_status()
soup = BeautifulSoup(response.text, "html.parser")
content_div = soup.find("div", {"id": "mw-content-text"}) or soup.body
return content_div.get_text(separator="\n", strip=True)
except Exception as e:
logger.error(f"Error fetching content from {url}: {e}")
return ""
def clean_text(text):
text = re.sub(r'\[\s*\d+\s*\]', '', text)
text = re.sub(r'\[\s*[a-zA-Z]+\s*\]', '', text)
text = re.sub(r'\n{2,}', '\n', text)
text = re.sub(r'[ \t]+', ' ', text)
return text.strip()
def chunk_text(text, chunk_size=500, overlap=50):
cleaned = clean_text(text)
splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=overlap)
return splitter.split_text(cleaned)
def load_and_chunk_webpage(url):
text = fetch_webpage_text(url)
return chunk_text(text)
# Step 2: Embed chunks using SentenceTransformer
def embed_chunks(chunks):
model = SentenceTransformer('all-MiniLM-L6-v2')
embeddings = model.encode(chunks, normalize_embeddings=True)
return embeddings, model
# Step 3: Build FAISS index using LangChain wrapper
def build_retriever(chunks):
embedding_func = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
db = LangchainFAISS.from_texts(chunks, embedding_func)
return db.as_retriever(search_type="similarity", search_kwargs={"k": 3}), db
# Step 4: Initialize LLM and RAG Chain
def initialize_llm():
return Together(
model="meta-llama/Llama-3-8b-chat-hf",
temperature=0.7,
max_tokens=512
)
# Initialize all components
wiki_url = "https://en.wikipedia.org/wiki/LLaMA"
chunks = load_and_chunk_webpage(wiki_url)
embeddings, embed_model = embed_chunks(chunks)
retriever, db = build_retriever(chunks)
llm = initialize_llm()
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
retriever=retriever,
chain_type="stuff"
)
# Chat logic
def chat_with_bot(query):
if not query.strip():
return "β Please enter a question."
return qa_chain.run(query)
# Summary logic
def summarize_content():
sample_text = " ".join(chunks[:20])
prompt = f"Summarize this text in 5 bullet points:\n\n{sample_text[:3000]}"
summary = llm.invoke(prompt)
return summary.content if hasattr(summary, "content") else summary
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown("## π€ Chat with LLaMA Webpage Content")
with gr.Row():
chatbot = gr.Chatbot(label="Chat History")
with gr.Row():
question = gr.Textbox(label="Ask your question about LLaMA", placeholder="e.g., Who developed LLaMA?")
ask_btn = gr.Button("Submit")
clear_btn = gr.Button("Clear Chat")
summary_output = gr.Textbox(label="π Summary of the Webpage", lines=8)
summarize_btn = gr.Button("Summarize Content")
def user_chat_handler(q, history):
response = chat_with_bot(q)
history.append((q, response))
return history, ""
ask_btn.click(fn=user_chat_handler, inputs=[question, chatbot], outputs=[chatbot, question])
clear_btn.click(lambda: [], None, chatbot)
summarize_btn.click(fn=summarize_content, inputs=[], outputs=summary_output)
demo.launch()
|