File size: 22,229 Bytes
393d2d7
 
d5894b1
393d2d7
 
 
 
d5894b1
4412065
d5894b1
393d2d7
 
 
 
 
 
 
 
 
fcde2f2
 
d5894b1
fcde2f2
393d2d7
 
 
d5894b1
fcde2f2
 
 
4412065
fcde2f2
d5894b1
fcde2f2
393d2d7
fcde2f2
d5894b1
 
393d2d7
 
 
 
 
fcde2f2
 
 
393d2d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcde2f2
 
 
 
393d2d7
 
d5894b1
 
393d2d7
fcde2f2
393d2d7
fcde2f2
 
 
 
 
393d2d7
 
 
 
 
fcde2f2
 
393d2d7
fcde2f2
d5894b1
393d2d7
 
 
 
fcde2f2
d5894b1
fcde2f2
393d2d7
 
 
 
fcde2f2
d5894b1
fcde2f2
393d2d7
 
 
fcde2f2
393d2d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcde2f2
 
 
 
7c7be00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
393d2d7
cf2d24e
 
 
7c7be00
1eb8a26
7c7be00
 
393d2d7
7c7be00
1eb8a26
 
 
 
7c7be00
 
 
 
393d2d7
cf2d24e
393d2d7
cf2d24e
7c7be00
 
393d2d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf2d24e
393d2d7
 
 
 
 
 
cf2d24e
 
 
 
393d2d7
7c7be00
393d2d7
 
 
 
 
 
 
fcde2f2
d5894b1
 
393d2d7
 
 
 
cf2d24e
393d2d7
 
 
 
 
 
7c7be00
393d2d7
 
 
 
 
fcde2f2
1eb8a26
 
d5894b1
 
7c7be00
 
 
393d2d7
7c7be00
 
 
 
393d2d7
 
 
 
 
 
 
 
 
 
7c7be00
 
 
 
393d2d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf2d24e
7c7be00
1eb8a26
7c7be00
393d2d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c7be00
393d2d7
 
 
 
 
 
 
7c7be00
 
 
393d2d7
 
 
7c7be00
393d2d7
 
 
 
 
 
 
 
 
 
 
 
 
 
7c7be00
393d2d7
 
 
 
 
 
7c7be00
393d2d7
7c7be00
 
393d2d7
 
 
7c7be00
393d2d7
 
 
 
 
 
 
 
 
7c7be00
 
393d2d7
 
7c7be00
 
 
393d2d7
 
 
 
7c7be00
 
 
393d2d7
 
 
7c7be00
393d2d7
7c7be00
393d2d7
 
 
7c7be00
d5894b1
393d2d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcde2f2
393d2d7
 
 
 
 
 
 
 
 
 
 
 
d5894b1
 
393d2d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcde2f2
 
 
d5894b1
393d2d7
 
7c7be00
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
import os
import json
import gradio as gr
import huggingface_hub
import numpy as np
import onnxruntime as rt
import pandas as pd
from PIL import Image
from huggingface_hub import login

# 假设 translator.py 中的 translate_texts 函数已正确定义
# from translator import translate_texts
# Mock translator for a standalone example if translator.py is not available
def translate_texts(texts, src_lang="auto", tgt_lang="zh"):
    print(f"Mock translating: {texts} from {src_lang} to {tgt_lang}")
    if not texts:
        return []
    # 返回一个简单的模拟翻译结果,实际使用时请确保 translator.py 可用且功能正确
    return [f"{text}_译" for text in texts]

# ------------------------------------------------------------------
# 模型配置
# ------------------------------------------------------------------
MODEL_REPO = "SmilingWolf/wd-eva02-large-tagger-v3"
MODEL_FILENAME = "model.onnx"
LABEL_FILENAME = "selected_tags.csv"

HF_TOKEN = os.environ.get("HF_TOKEN", "")
if HF_TOKEN:
    login(token=HF_TOKEN)
else:
    print("⚠️ 未检测到 HF_TOKEN,私有模型可能下载失败")

# ------------------------------------------------------------------
# Tagger 类 (全局实例化)
# ------------------------------------------------------------------
class Tagger:
    def __init__(self):
        self.hf_token = HF_TOKEN
        self.tag_names = []
        self.categories = {}
        self.model = None
        self.input_size = 0
        self._load_model_and_labels()

    def _load_model_and_labels(self):
        try:
            label_path = huggingface_hub.hf_hub_download(
                MODEL_REPO, LABEL_FILENAME, token=self.hf_token, resume_download=True
            )
            model_path = huggingface_hub.hf_hub_download(
                MODEL_REPO, MODEL_FILENAME, token=self.hf_token, resume_download=True
            )

            tags_df = pd.read_csv(label_path)
            self.tag_names = tags_df["name"].tolist()
            self.categories = {
                "rating": np.where(tags_df["category"] == 9)[0],
                "general": np.where(tags_df["category"] == 0)[0],
                "character": np.where(tags_df["category"] == 4)[0],
            }
            self.model = rt.InferenceSession(model_path)
            self.input_size = self.model.get_inputs()[0].shape[1]
            print("✅ 模型和标签加载成功")
        except Exception as e:
            print(f"❌ 模型或标签加载失败: {e}")
            # 可以选择抛出异常或设置一个标志,让应用知道模型未就绪
            raise RuntimeError(f"模型初始化失败: {e}")


    # ------------------------- preprocess -------------------------
    def _preprocess(self, img: Image.Image) -> np.ndarray:
        if img is None:
            raise ValueError("输入图像不能为空")
        if img.mode != "RGB":
            img = img.convert("RGB")
        size = max(img.size)
        canvas = Image.new("RGB", (size, size), (255, 255, 255))
        canvas.paste(img, ((size - img.width) // 2, (size - img.height) // 2))
        if size != self.input_size:
            canvas = canvas.resize((self.input_size, self.input_size), Image.BICUBIC)
        return np.array(canvas)[:, :, ::-1].astype(np.float32)  # to BGR

    # --------------------------- predict --------------------------
    def predict(self, img: Image.Image, gen_th: float = 0.35, char_th: float = 0.85):
        if self.model is None:
            raise RuntimeError("模型未成功加载,无法进行预测。")
        inp_name = self.model.get_inputs()[0].name
        outputs = self.model.run(None, {inp_name: self._preprocess(img)[None, ...]})[0][0]

        res = {"ratings": {}, "general": {}, "characters": {}}
        tag_categories_for_translation = {"ratings": [], "general": [], "characters": []}

        for idx in self.categories["rating"]:
            tag_name = self.tag_names[idx].replace("_", " ")
            res["ratings"][tag_name] = float(outputs[idx])
            tag_categories_for_translation["ratings"].append(tag_name)


        for idx in self.categories["general"]:
            if outputs[idx] > gen_th:
                tag_name = self.tag_names[idx].replace("_", " ")
                res["general"][tag_name] = float(outputs[idx])
                tag_categories_for_translation["general"].append(tag_name)


        for idx in self.categories["character"]:
            if outputs[idx] > char_th:
                tag_name = self.tag_names[idx].replace("_", " ")
                res["characters"][tag_name] = float(outputs[idx])
                tag_categories_for_translation["character"].append(tag_name)


        # Sort general tags by score
        res["general"] = dict(sorted(res["general"].items(), key=lambda kv: kv[1], reverse=True))
        # Sort character tags by score (optional, but good for consistency)
        res["characters"] = dict(sorted(res["characters"].items(), key=lambda kv: kv[1], reverse=True))
        # Ratings are usually fixed, but sorting doesn't hurt if order matters for display
        res["ratings"] = dict(sorted(res["ratings"].items(), key=lambda kv: kv[1], reverse=True))


        # Re-populate tag_categories_for_translation based on sorted and filtered results
        tag_categories_for_translation["general"] = list(res["general"].keys())
        tag_categories_for_translation["characters"] = list(res["characters"].keys())
        tag_categories_for_translation["ratings"] = list(res["ratings"].keys()) # Order from sorted res

        return res, tag_categories_for_translation

# 全局 Tagger 实例
try:
    tagger_instance = Tagger()
except RuntimeError as e:
    print(f"应用启动时Tagger初始化失败: {e}")
    tagger_instance = None # 允许应用启动,但在处理时会失败

# ------------------------------------------------------------------
# Gradio UI
# ------------------------------------------------------------------
custom_css = """
.label-container {
    max-height: 300px;
    overflow-y: auto;
    border: 1px solid #ddd;
    padding: 10px;
    border-radius: 5px;
    background-color: #f9f9f9;
}
.tag-item {
    display: flex;
    justify-content: space-between;
    align-items: center;
    margin: 2px 0;
    padding: 2px 5px;
    border-radius: 3px;
    background-color: #fff;
    transition: background-color 0.2s;
}
.tag-item:hover {
    background-color: #f0f0f0;
}
.tag-en {
    font-weight: bold;
    color: #333;
    cursor: pointer; /* Indicates clickable */
}
.tag-zh {
    color: #666;
    margin-left: 10px;
}
.tag-score {
    color: #999;
    font-size: 0.9em;
}
.btn-analyze-container { /* Custom class for analyze button container */
    margin-top: 15px;
    margin-bottom: 15px;
}
"""

_js_functions = """
function copyToClipboard(text) {
    navigator.clipboard.writeText(text).then(() => {
        // console.log('Tag copied to clipboard: ' + text);
        const feedback = document.createElement('div');
        feedback.textContent = '已复制: ' + text.substring(0,30) + (text.length > 30 ? '...' : ''); // Show part of copied text
        feedback.style.position = 'fixed';
        feedback.style.bottom = '20px';
        feedback.style.left = '50%';
        feedback.style.transform = 'translateX(-50%)';
        feedback.style.backgroundColor = '#4CAF50';
        feedback.style.color = 'white';
        feedback.style.padding = '10px 20px';
        feedback.style.borderRadius = '5px';
        feedback.style.zIndex = '10000'; // Ensure it's on top
        feedback.style.transition = 'opacity 0.5s ease-out';
        document.body.appendChild(feedback);
        setTimeout(() => {
            feedback.style.opacity = '0';
            setTimeout(() => {
                document.body.removeChild(feedback);
            }, 500);
        }, 1500);
    }).catch(err => {
        console.error('Failed to copy tag: ', err);
        alert('复制失败: ' + err); // Fallback for browsers that might block it
    });
}
"""

with gr.Blocks(theme=gr.themes.Soft(), title="AI 图像标签分析器", css=custom_css, js=_js_functions) as demo:
    gr.Markdown("# 🖼️ AI 图像标签分析器")
    gr.Markdown("上传图片自动识别标签,支持中英文显示和一键复制。")

    # State variables to store results for re-processing summary without re-running model
    state_res = gr.State({})
    state_translations_dict = gr.State({})
    state_tag_categories_for_translation = gr.State({})


    with gr.Row():
        with gr.Column(scale=1):
            img_in = gr.Image(type="pil", label="上传图片", height=300)
            
            btn = gr.Button("🚀 开始分析", variant="primary", elem_classes=["btn-analyze-container"])
            
            with gr.Accordion("⚙️ 高级设置", open=False):
                gen_slider = gr.Slider(0, 1, value=0.35, step=0.01, label="通用标签阈值", info="越高 → 标签更少更准")
                char_slider = gr.Slider(0, 1, value=0.85, step=0.01, label="角色标签阈值", info="推荐保持较高阈值")
                show_tag_scores = gr.Checkbox(True, label="在列表中显示标签置信度")
            
            with gr.Accordion("📊 标签汇总设置", open=True):
                gr.Markdown("选择要包含在下方汇总文本框中的标签类别:")
                with gr.Row():
                    sum_general = gr.Checkbox(True, label="通用标签", min_width=50)
                    sum_char = gr.Checkbox(True, label="角色标签", min_width=50)
                    sum_rating = gr.Checkbox(False, label="评分标签", min_width=50)
                sum_sep = gr.Dropdown(["逗号", "换行", "空格"], value="逗号", label="标签之间的分隔符")
                sum_show_zh = gr.Checkbox(False, label="在汇总中显示中文翻译")

            processing_info = gr.Markdown("", visible=False)

        with gr.Column(scale=2):
            with gr.Tabs():
                with gr.TabItem("🏷️ 通用标签"):
                    out_general = gr.HTML(label="General Tags")
                with gr.TabItem("👤 角色标签"):
                    gr.Markdown("<p style='color:gray; font-size:small;'>提示:角色标签推测基于截至2024年2月的数据。</p>")
                    out_char = gr.HTML(label="Character Tags")
                with gr.TabItem("⭐ 评分标签"):
                    out_rating = gr.HTML(label="Rating Tags")
            
            gr.Markdown("### 标签汇总结果")
            out_summary = gr.Textbox(
                label="标签汇总(仅英文,可通过上方设置添加中文)",
                placeholder="分析完成后,此处将显示汇总的英文标签...",
                lines=5,
                show_copy_button=True
            )

    # ----------------- 辅助函数 -----------------
    def format_tags_html(tags_dict, translations_list, category_name, show_scores=True, show_translation_in_list=True):
        if not tags_dict:
            return "<p>暂无标签</p>"
        
        html = '<div class="label-container">'
        # Ensure translations_list is a list and matches length, or provide empty strings if not.
        # This assumes translations_list corresponds to the order in tags_dict.keys()
        # For dictionaries, keys() order is insertion order from Python 3.7+
        
        if not isinstance(translations_list, list): # defensive check
            translations_list = []

        tag_keys = list(tags_dict.keys())

        for i, tag in enumerate(tag_keys):
            score = tags_dict[tag]
            escaped_tag = tag.replace("'", "\\'") # Escape for JS
            
            html += '<div class="tag-item">'
            tag_display_html = f'<span class="tag-en" onclick="copyToClipboard(\'{escaped_tag}\')">{tag}</span>'
            
            if show_translation_in_list and i < len(translations_list) and translations_list[i]:
                tag_display_html += f'<span class="tag-zh">({translations_list[i]})</span>'
            
            html += f'<div>{tag_display_html}</div>'
            if show_scores:
                html += f'<span class="tag-score">{score:.3f}</span>'
            html += '</div>'
        html += '</div>'
        return html

    def generate_summary_text_content(
        current_res, current_translations_dict,
        s_gen, s_char, s_rat, s_sep_type, s_show_zh
    ):
        if not current_res:
            return "请先分析图像或选择要汇总的标签类别。"

        summary_parts = []
        separators = {"逗号": ", ", "换行": "\n", "空格": " "}
        separator = separators.get(s_sep_type, ", ")

        categories_to_summarize = []
        if s_gen: categories_to_summarize.append("general")
        if s_char: categories_to_summarize.append("characters")
        if s_rat: categories_to_summarize.append("ratings")

        if not categories_to_summarize:
            return "请至少选择一个标签类别进行汇总。"

        for cat_key in categories_to_summarize:
            if current_res.get(cat_key):
                tags_to_join = []
                cat_tags_en = list(current_res[cat_key].keys())
                cat_translations = current_translations_dict.get(cat_key, [])

                for i, en_tag in enumerate(cat_tags_en):
                    if s_show_zh and i < len(cat_translations) and cat_translations[i]:
                        tags_to_join.append(f"{en_tag}({cat_translations[i]})")
                    else:
                        tags_to_join.append(en_tag)
                if tags_to_join: # only add if there are tags for this category
                     summary_parts.append(separator.join(tags_to_join))
        
        # Join parts with double newline for readability if multiple categories present and separator is not newline
        joiner = "\n\n" if separator != "\n" and len(summary_parts) > 1 else separator if separator == "\n" else " "
        
        final_summary = joiner.join(summary_parts)
        return final_summary if final_summary else "选定的类别中没有找到标签。"


    # ----------------- 主要处理回调 -----------------
    def process_image_and_generate_outputs(
        img, g_th, c_th, s_scores, # Main inputs
        s_gen, s_char, s_rat, s_sep, s_zh_in_sum # Summary controls from UI
        ):
        if img is None:
            yield (
                gr.update(interactive=True, value="🚀 开始分析"),
                gr.update(visible=True, value="❌ 请先上传图片。"),
                "", "", "", "", # HTML outputs
                gr.update(placeholder="请先上传图片并开始分析..."), # Summary text
                {}, {}, {} # States
            )
            return
        
        if tagger_instance is None:
            yield (
                gr.update(interactive=True, value="🚀 开始分析"),
                gr.update(visible=True, value="❌ 分析器未成功初始化,请检查控制台错误。"),
                "", "", "", "",
                gr.update(placeholder="分析器初始化失败..."),
                {}, {}, {}
            )
            return

        yield (
            gr.update(interactive=False, value="🔄 处理中..."),
            gr.update(visible=True, value="🔄 正在分析图像,请稍候..."),
            gr.HTML(value="<p>分析中...</p>"), # General
            gr.HTML(value="<p>分析中...</p>"), # Character
            gr.HTML(value="<p>分析中...</p>"), # Rating
            gr.update(value="分析中,请稍候..."), # Summary
            {}, {}, {} # Clear states initially
        )
        
        try:
            # 1. Predict tags
            # The predict method now returns res and tag_categories_for_translation
            res, tag_categories_original_order = tagger_instance.predict(img, g_th, c_th)

            # 2. Translate all tags that will be displayed in lists
            # The `show_zh_in_list_checkbox` now controls if we translate for lists.
            # For summary, translation is controlled by `s_zh_in_sum`.
            # We should always translate all potential tags to have them ready.
            
            all_tags_to_translate = []
            for cat_key in ["general", "characters", "ratings"]:
                all_tags_to_translate.extend(tag_categories_original_order.get(cat_key, []))
            
            all_translations_flat = []
            if all_tags_to_translate: # Only call translate if there's something to translate
                all_translations_flat = translate_texts(all_tags_to_translate, src_lang="auto", tgt_lang="zh")
            
            current_translations_dict = {}
            offset = 0
            for cat_key in ["general", "characters", "ratings"]:
                cat_original_tags = tag_categories_original_order.get(cat_key, [])
                num_tags_in_cat = len(cat_original_tags)
                if num_tags_in_cat > 0:
                    current_translations_dict[cat_key] = all_translations_flat[offset : offset + num_tags_in_cat]
                    offset += num_tags_in_cat
                else:
                    current_translations_dict[cat_key] = []


            # 3. Format HTML outputs (always show English, translations if available and `show_zh_in_list` is true)
            # Let's assume `show_zh_in_list` is a new checkbox or fixed to true for list display.
            # For simplicity, let's assume list translations are always prepared if `current_translations_dict` has them.
            
            general_html = format_tags_html(res.get("general", {}), current_translations_dict.get("general", []), "general", s_scores, True)
            char_html = format_tags_html(res.get("characters", {}), current_translations_dict.get("characters", []), "characters", s_scores, True)
            rating_html = format_tags_html(res.get("ratings", {}), current_translations_dict.get("ratings", []), "ratings", s_scores, True)

            # 4. Generate initial summary text (based on current summary settings from UI)
            summary_text = generate_summary_text_content(
                res, current_translations_dict,
                s_gen, s_char, s_rat, s_sep, s_zh_in_sum # Use summary specific checkbox for zh
            )

            yield (
                gr.update(interactive=True, value="🚀 开始分析"),
                gr.update(visible=True, value="✅ 分析完成!"), # Success message
                general_html,
                char_html,
                rating_html,
                gr.update(value=summary_text),
                res, # Store full results in state
                current_translations_dict, # Store translations in state
                tag_categories_original_order # Store original order for consistency if needed
            )
            
        except Exception as e:
            import traceback
            tb_str = traceback.format_exc()
            print(f"处理时发生错误: {e}\n{tb_str}")
            yield (
                gr.update(interactive=True, value="🚀 开始分析"),
                gr.update(visible=True, value=f"❌ 处理失败: {str(e)}"),
                "<p>处理出错</p>", "<p>处理出错</p>", "<p>处理出错</p>", # Clear HTML
                gr.update(value=f"错误: {str(e)}", placeholder="分析失败..."), # Update summary
                {}, {}, {} # Clear states
            )

    # ----------------- 更新汇总文本的回调 -----------------
    def update_summary_display(
        s_gen, s_char, s_rat, s_sep, s_zh_in_sum, # UI controls for summary
        current_res_from_state, current_translations_from_state # Data from state
    ):
        if not current_res_from_state: # No analysis done yet
            return gr.update(placeholder="请先完成一次图像分析以生成汇总。", value="")

        new_summary_text = generate_summary_text_content(
            current_res_from_state, current_translations_from_state,
            s_gen, s_char, s_rat, s_sep, s_zh_in_sum
        )
        return gr.update(value=new_summary_text)

    # ----------------- 绑定事件 -----------------
    btn.click(
        process_image_and_generate_outputs,
        inputs=[
            img_in, gen_slider, char_slider, show_tag_scores,
            sum_general, sum_char, sum_rating, sum_sep, sum_show_zh # Pass summary controls directly
        ],
        outputs=[
            btn, processing_info,
            out_general, out_char, out_rating,
            out_summary,
            state_res, state_translations_dict, state_tag_categories_for_translation
        ],
        # show_progress="full" # Gradio's built-in progress
    )

    # Bind summary update controls to the update_summary_display function
    summary_controls = [sum_general, sum_char, sum_rating, sum_sep, sum_show_zh]
    for ctrl in summary_controls:
        ctrl.change(
            fn=update_summary_display,
            inputs=summary_controls + [state_res, state_translations_dict], # All controls + state data
            outputs=[out_summary],
            # show_progress=False # Typically fast, no need for progress indicator
        )
    
    # If tag score display in lists is changed, re-render HTMLs
    # This requires storing the raw data or re-processing parts of it.
    # For simplicity, we can make the list HTML generation also dependent on state if needed,
    # or re-trigger a lighter version of 'process' that only updates HTML.
    # Current implementation: score display is set at 'analyze' time.
    # To make 'show_tag_scores' dynamic for lists *after* analysis without re-analyzing:
    # We would need a new callback that re-runs `format_tags_html` for each category
    # using data from `state_res` and `state_translations_dict`.

# ------------------------------------------------------------------
# 启动
# ------------------------------------------------------------------
if __name__ == "__main__":
    if tagger_instance is None:
        print("CRITICAL: Tagger 未能初始化,应用功能将受限。请检查之前的错误信息。")
    demo.launch(server_name="0.0.0.0", server_port=7860)