File size: 16,419 Bytes
fcde2f2
d5894b1
fcde2f2
d5894b1
4412065
d5894b1
fcde2f2
 
 
d5894b1
fcde2f2
 
 
 
d5894b1
fcde2f2
 
 
4412065
fcde2f2
d5894b1
fcde2f2
 
 
d5894b1
 
fcde2f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5894b1
 
fcde2f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5894b1
fcde2f2
 
d5894b1
fcde2f2
 
 
d5894b1
fcde2f2
 
 
 
 
 
 
 
 
 
 
7c7be00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcaf260
 
7c7be00
fcaf260
 
 
 
 
 
 
 
 
 
 
 
 
7c7be00
 
 
 
 
 
 
fcaf260
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c7be00
 
 
 
 
fcde2f2
 
d5894b1
 
fcde2f2
7c7be00
fcde2f2
 
d5894b1
fcde2f2
7c7be00
 
 
 
 
 
 
fcde2f2
d5894b1
 
7c7be00
 
 
 
 
 
 
 
fcaf260
 
 
 
7c7be00
 
fcaf260
 
 
 
 
 
 
 
 
 
 
fcde2f2
 
fcaf260
7c7be00
 
 
 
 
 
fcaf260
 
 
 
 
 
 
 
 
7c7be00
 
fcaf260
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c7be00
fcaf260
 
7c7be00
 
 
fcaf260
7c7be00
 
 
 
 
 
 
 
 
 
 
 
 
 
fcaf260
 
 
 
 
 
7c7be00
 
 
 
 
 
 
fcaf260
7c7be00
 
 
 
 
 
fcaf260
 
 
7c7be00
 
fcaf260
7c7be00
 
 
fcaf260
 
 
 
7c7be00
fcaf260
7c7be00
fcaf260
 
 
7c7be00
fcaf260
7c7be00
 
fcaf260
 
7c7be00
fcaf260
7c7be00
fcaf260
7c7be00
fcaf260
7c7be00
 
 
 
 
 
fcaf260
 
 
 
7c7be00
 
 
fcaf260
7c7be00
 
 
fcaf260
7c7be00
d5894b1
fcaf260
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c7be00
fcde2f2
 
fcaf260
 
7c7be00
d5894b1
fcaf260
 
 
 
 
 
 
 
 
 
 
 
d5894b1
fcde2f2
 
 
d5894b1
7c7be00
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
import os, json
import gradio as gr
import huggingface_hub, numpy as np, onnxruntime as rt, pandas as pd
from PIL import Image
from huggingface_hub import login

from translator import translate_texts

# ------------------------------------------------------------------
# 模型配置
# ------------------------------------------------------------------
MODEL_REPO      = "SmilingWolf/wd-swinv2-tagger-v3"
MODEL_FILENAME  = "model.onnx"
LABEL_FILENAME  = "selected_tags.csv"

HF_TOKEN = os.environ.get("HF_TOKEN", "")
if HF_TOKEN:
    login(token=HF_TOKEN)
else:
    print("⚠️ 未检测到 HF_TOKEN,私有模型可能下载失败")

# ------------------------------------------------------------------
# Tagger 类
# ------------------------------------------------------------------
class Tagger:
    def __init__(self):
        self.hf_token   = HF_TOKEN
        self._load_model_and_labels()

    def _load_model_and_labels(self):
        label_path = huggingface_hub.hf_hub_download(
            MODEL_REPO, LABEL_FILENAME, token=self.hf_token
        )
        model_path = huggingface_hub.hf_hub_download(
            MODEL_REPO, MODEL_FILENAME, token=self.hf_token
        )

        tags_df           = pd.read_csv(label_path)
        self.tag_names    = tags_df["name"].tolist()
        self.categories   = {
            "rating":    np.where(tags_df["category"] == 9)[0],
            "general":   np.where(tags_df["category"] == 0)[0],
            "character": np.where(tags_df["category"] == 4)[0],
        }
        self.model        = rt.InferenceSession(model_path)
        self.input_size   = self.model.get_inputs()[0].shape[1]

    # ------------------------- preprocess -------------------------
    def _preprocess(self, img: Image.Image) -> np.ndarray:
        if img.mode != "RGB":
            img = img.convert("RGB")
        size   = max(img.size)
        canvas = Image.new("RGB", (size, size), (255, 255, 255))
        canvas.paste(img, ((size - img.width)//2, (size - img.height)//2))
        if size != self.input_size:
            canvas = canvas.resize((self.input_size, self.input_size), Image.BICUBIC)
        return np.array(canvas)[:, :, ::-1].astype(np.float32)  # to BGR

    # --------------------------- predict --------------------------
    def predict(self, img: Image.Image,
                gen_th: float = 0.35,
                char_th: float = 0.85):
        inp_name  = self.model.get_inputs()[0].name
        outputs   = self.model.run(None, {inp_name: self._preprocess(img)[None, ...]})[0][0]

        res = {"ratings": {}, "general": {}, "characters": {}}

        for idx in self.categories["rating"]:
            res["ratings"][self.tag_names[idx].replace("_", " ")] = float(outputs[idx])

        for idx in self.categories["general"]:
            if outputs[idx] > gen_th:
                res["general"][self.tag_names[idx].replace("_", " ")] = float(outputs[idx])

        for idx in self.categories["character"]:
            if outputs[idx] > char_th:
                res["characters"][self.tag_names[idx].replace("_", " ")] = float(outputs[idx])

        res["general"] = dict(sorted(res["general"].items(),
                                     key=lambda kv: kv[1],
                                     reverse=True))
        return res

# ------------------------------------------------------------------
# Gradio UI
# ------------------------------------------------------------------
custom_css = """
.label-container {
    max-height: 300px;
    overflow-y: auto;
    border: 1px solid #ddd;
    padding: 10px;
    border-radius: 5px;
    background-color: #f9f9f9;
}
.tag-item {
    display: flex;
    justify-content: space-between;
    align-items: center;
    margin: 2px 0;
    padding: 2px 5px;
    border-radius: 3px;
    background-color: #fff;
    cursor: pointer;
    transition: background-color 0.2s;
}
.tag-item:hover {
    background-color: #e8f4ff;
}
.tag-item:active {
    background-color: #bde0ff;
}
.tag-content {
    display: flex;
    align-items: center;
    gap: 10px;
    flex: 1;
}
.tag-text {
    font-weight: bold;
    color: #333;
}
.tag-score {
    color: #999;
    font-size: 0.9em;
}
.copy-container {
    position: relative;
    margin-bottom: 5px;
}
.copy-button {
    position: absolute;
    top: 5px;
    right: 5px;
    padding: 4px 8px;
    font-size: 12px;
    background-color: #f0f0f0;
    border: 1px solid #ddd;
    border-radius: 4px;
    cursor: pointer;
    transition: all 0.2s;
}
.copy-button:hover {
    background-color: #e0e0e0;
}
.copy-button:active {
    background-color: #d0d0d0;
}
.toast {
    position: fixed;
    top: 20px;
    right: 20px;
    padding: 10px 20px;
    background-color: #4CAF50;
    color: white;
    border-radius: 4px;
    opacity: 0;
    transition: opacity 0.3s;
    z-index: 1000;
}
.toast.show {
    opacity: 1;
}
"""

with gr.Blocks(theme=gr.themes.Soft(), title="AI 图像标签分析器", css=custom_css) as demo:
    gr.Markdown("# 🖼️ AI 图像标签分析器")
    gr.Markdown("上传图片自动识别标签,并可一键翻译成中文")

    with gr.Row():
        with gr.Column(scale=1):
            img_in = gr.Image(type="pil", label="上传图片")
            with gr.Accordion("⚙️ 高级设置", open=True):
                gen_slider  = gr.Slider(0, 1, 0.35,
                                        label="通用标签阈值", info="越高→标签更少更准")
                char_slider = gr.Slider(0, 1, 0.85,
                                        label="角色标签阈值", info="推荐保持较高阈值")
                
                gr.Markdown("### 汇总设置")
                with gr.Row():
                    sum_general = gr.Checkbox(True, label="通用标签")
                    sum_char = gr.Checkbox(True, label="角色标签")
                    sum_rating = gr.Checkbox(False, label="评分标签")
                sum_sep = gr.Dropdown(["逗号", "换行", "空格"], value="逗号", label="分隔符")

        with gr.Column(scale=2):
            with gr.Tabs():
                with gr.TabItem("🏷️ 通用标签"):
                    out_general = gr.HTML(label="General Tags")
                with gr.TabItem("👤 角色标签"):
                    out_char = gr.HTML(label="Character Tags")
                with gr.TabItem("⭐ 评分标签"):
                    out_rating = gr.HTML(label="Rating Tags")
            
            gr.Markdown("### 标签汇总")
            with gr.Row():
                lang_btn = gr.Button("中/EN", variant="secondary", scale=0)
                copy_btn = gr.Button("📋 复制", variant="secondary", scale=0)
            
            out_summary = gr.Textbox(label="标签汇总", 
                                     placeholder="选择需要汇总的标签类别...",
                                     lines=3,
                                     interactive=False)
            
            with gr.Row():
                processing_info = gr.Markdown("", visible=False)
                btn = gr.Button("开始分析", variant="primary", scale=0)

    # 存储状态的隐藏组件
    lang_state = gr.State("en")  # 默认显示英文
    tags_data = gr.State({})     # 存储标签数据
    translations_data = gr.State({})  # 存储翻译数据

    # ----------------- 处理回调 -----------------
    def format_tags_html(tags_dict, translations, category_key, current_lang):
        """格式化标签为HTML格式"""
        if not tags_dict:
            return "<p>暂无标签</p>"
        
        html = '<div class="label-container">'
        for i, (tag, score) in enumerate(tags_dict.items()):
            display_text = translations[i] if current_lang == "zh" and i < len(translations) else tag
            tag_html = f'''
            <div class="tag-item" onclick="copyToClipboard('{tag}', '{category_key}_{i}')">
                <div class="tag-content">
                    <span class="tag-text">{display_text}</span>
                </div>
                <span class="tag-score">{score:.3f}</span>
            </div>
            '''
            html += tag_html
        html += '</div>'
        
        # 添加复制函数的JavaScript
        copy_script = '''
        <script>
        function copyToClipboard(text, itemId) {
            navigator.clipboard.writeText(text).then(function() {
                showToast('已复制: ' + text);
            });
        }
        
        function showToast(message) {
            var toast = document.createElement('div');
            toast.className = 'toast show';
            toast.textContent = message;
            document.body.appendChild(toast);
            
            setTimeout(function() {
                toast.classList.remove('show');
                setTimeout(function() {
                    document.body.removeChild(toast);
                }, 300);
            }, 1500);
        }
        </script>
        '''
        
        return html + copy_script

    def process(img, g_th, c_th, sum_gen, sum_char, sum_rat, sep_type, current_lang, prev_tags, prev_translations):
        # 开始处理
        yield (
            gr.update(interactive=False, value="处理中..."),
            gr.update(visible=True, value="🔄 正在分析图像..."),
            "", "", "", "", current_lang, {}, {}
        )
        
        try:
            tagger = Tagger()
            res = tagger.predict(img, g_th, c_th)

            # 收集所有需要翻译的标签
            all_tags = []
            tag_categories = {
                "general": list(res["general"].keys()),
                "characters": list(res["characters"].keys()),
                "ratings": list(res["ratings"].keys())
            }
            
            for tags in tag_categories.values():
                all_tags.extend(tags)
            
            # 批量翻译
            if all_tags:
                translations = translate_texts(all_tags, src_lang="auto", tgt_lang="zh")
            else:
                translations = []

            # 分配翻译结果
            translations_dict = {}
            offset = 0
            for category, tags in tag_categories.items():
                if tags:
                    translations_dict[category] = translations[offset:offset+len(tags)]
                    offset += len(tags)
                else:
                    translations_dict[category] = []

            # 生成HTML输出
            general_html = format_tags_html(res["general"], translations_dict["general"], "general", current_lang)
            char_html = format_tags_html(res["characters"], translations_dict["characters"], "characters", current_lang)
            rating_html = format_tags_html(res["ratings"], translations_dict["ratings"], "ratings", current_lang)

            # 生成汇总文本
            summary_tags = []
            separators = {"逗号": ", ", "换行": "\n", "空格": " "}
            separator = separators[sep_type]
            
            # 按顺序:角色、通用、评分
            if sum_char and res["characters"]:
                if current_lang == "zh" and translations_dict["characters"]:
                    summary_tags.extend(translations_dict["characters"])
                else:
                    summary_tags.extend(list(res["characters"].keys()))
            
            if sum_gen and res["general"]:
                if current_lang == "zh" and translations_dict["general"]:
                    summary_tags.extend(translations_dict["general"])
                else:
                    summary_tags.extend(list(res["general"].keys()))
            
            if sum_rat and res["ratings"]:
                if current_lang == "zh" and translations_dict["ratings"]:
                    summary_tags.extend(translations_dict["ratings"])
                else:
                    summary_tags.extend(list(res["ratings"].keys()))
            
            summary_text = separator.join(summary_tags) if summary_tags else "请选择要汇总的标签类别"

            # 完成处理
            yield (
                gr.update(interactive=True, value="开始分析"),
                gr.update(visible=False),
                general_html,
                char_html,
                rating_html,
                summary_text,
                current_lang,
                res,
                translations_dict
            )
            
        except Exception as e:
            # 出错处理
            yield (
                gr.update(interactive=True, value="开始分析"),
                gr.update(visible=True, value=f"❌ 处理失败: {str(e)}"),
                "", "", "", "", current_lang, {}, {}
            )

    def toggle_language(current_lang, tags, translations):
        """切换语言显示"""
        new_lang = "zh" if current_lang == "en" else "en"
        
        # 重新生成HTML
        general_html = format_tags_html(tags.get("general", {}), translations.get("general", []), "general", new_lang)
        char_html = format_tags_html(tags.get("characters", {}), translations.get("characters", []), "characters", new_lang)
        rating_html = format_tags_html(tags.get("ratings", {}), translations.get("ratings", []), "ratings", new_lang)
        
        # 更新汇总文本
        current_summary = out_summary.value if hasattr(out_summary, 'value') else ""
        if current_summary and current_summary != "请选择要汇总的标签类别":
            # 需要重新生成汇总文本
            summary_tags = []
            separator = ", "  # 这里简化,实际应该记住用户选择的分隔符
            
            # 检查选择的类别并生成汇总
            # 注意:这里只是示例,实际需要传入选择状态
            for category, category_tags in tags.items():
                if category_tags:
                    if new_lang == "zh" and translations.get(category):
                        summary_tags.extend(translations[category])
                    else:
                        summary_tags.extend(list(category_tags.keys()))
            
            summary_text = separator.join(summary_tags) if summary_tags else current_summary
        else:
            summary_text = current_summary
        
        return (
            new_lang,
            general_html,
            char_html,
            rating_html,
            summary_text
        )

    def copy_summary(text):
        """提示复制汇总文本"""
        # 使用JavaScript来复制文本
        copy_js = f'''
        <script>
        navigator.clipboard.writeText(`{text}`).then(function() {{
            showCopyToast('标签已复制到剪贴板');
        }});
        
        function showCopyToast(message) {{
            var toast = document.createElement('div');
            toast.className = 'toast show';
            toast.textContent = message;
            toast.style.position = 'fixed';
            toast.style.top = '20px';
            toast.style.right = '20px';
            toast.style.padding = '10px 20px';
            toast.style.backgroundColor = '#4CAF50';
            toast.style.color = 'white';
            toast.style.borderRadius = '4px';
            toast.style.zIndex = '1000';
            document.body.appendChild(toast);
            
            setTimeout(function() {{
                toast.remove();
            }}, 1500);
        }}
        </script>
        '''
        return gr.update(value=copy_js)

    # 绑定事件
    btn.click(
        process,
        inputs=[img_in, gen_slider, char_slider, sum_general, sum_char, sum_rating, sum_sep, lang_state, tags_data, translations_data],
        outputs=[btn, processing_info, out_general, out_char, out_rating, out_summary, lang_state, tags_data, translations_data],
        show_progress=True
    )
    
    lang_btn.click(
        toggle_language,
        inputs=[lang_state, tags_data, translations_data],
        outputs=[lang_state, out_general, out_char, out_rating, out_summary]
    )
    
    copy_btn.click(
        copy_summary,
        inputs=[out_summary],
        outputs=[gr.HTML(visible=False)]
    )

# ------------------------------------------------------------------
# 启动
# ------------------------------------------------------------------
if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860)