Image_Inversion / app.py
IdlecloudX's picture
Update app.py
6ba3022 verified
import os
import json
import gradio as gr
import huggingface_hub
import numpy as np
import onnxruntime as rt
import pandas as pd
from PIL import Image
from huggingface_hub import login
from translator import translate_texts
# ------------------------------------------------------------------
# 模型配置
# ------------------------------------------------------------------
MODEL_REPO = "SmilingWolf/wd-eva02-large-tagger-v3"
MODEL_FILENAME = "model.onnx"
LABEL_FILENAME = "selected_tags.csv"
HF_TOKEN = os.environ.get("HF_TOKEN", "")
if HF_TOKEN:
login(token=HF_TOKEN)
else:
print("⚠️ 未检测到 HF_TOKEN,私有模型可能下载失败")
# ------------------------------------------------------------------
# Tagger 类 (全局实例化)
# ------------------------------------------------------------------
class Tagger:
def __init__(self):
self.hf_token = HF_TOKEN
self.tag_names = []
self.categories = {}
self.model = None
self.input_size = 0
self._load_model_and_labels()
def _load_model_and_labels(self):
try:
label_path = huggingface_hub.hf_hub_download(
MODEL_REPO, LABEL_FILENAME, token=self.hf_token, resume_download=True
)
model_path = huggingface_hub.hf_hub_download(
MODEL_REPO, MODEL_FILENAME, token=self.hf_token, resume_download=True
)
tags_df = pd.read_csv(label_path)
self.tag_names = tags_df["name"].tolist()
self.categories = {
"rating": np.where(tags_df["category"] == 9)[0],
"general": np.where(tags_df["category"] == 0)[0],
"character": np.where(tags_df["category"] == 4)[0],
}
self.model = rt.InferenceSession(model_path)
self.input_size = self.model.get_inputs()[0].shape[1]
print("✅ 模型和标签加载成功")
except Exception as e:
print(f"❌ 模型或标签加载失败: {e}")
raise RuntimeError(f"模型初始化失败: {e}")
# ------------------------- preprocess -------------------------
def _preprocess(self, img: Image.Image) -> np.ndarray:
if img is None:
raise ValueError("输入图像不能为空")
if img.mode != "RGB":
img = img.convert("RGB")
size = max(img.size)
canvas = Image.new("RGB", (size, size), (255, 255, 255))
canvas.paste(img, ((size - img.width) // 2, (size - img.height) // 2))
if size != self.input_size:
canvas = canvas.resize((self.input_size, self.input_size), Image.BICUBIC)
return np.array(canvas)[:, :, ::-1].astype(np.float32) # to BGR
# --------------------------- predict --------------------------
def predict(self, img: Image.Image, gen_th: float = 0.35, char_th: float = 0.85):
if self.model is None:
raise RuntimeError("模型未成功加载,无法进行预测。")
inp_name = self.model.get_inputs()[0].name
outputs = self.model.run(None, {inp_name: self._preprocess(img)[None, ...]})[0][0]
res = {"ratings": {}, "general": {}, "characters": {}}
tag_categories_for_translation = {"ratings": [], "general": [], "characters": []}
for idx in self.categories["rating"]:
tag_name = self.tag_names[idx].replace("_", " ")
res["ratings"][tag_name] = float(outputs[idx])
tag_categories_for_translation["ratings"].append(tag_name)
for idx in self.categories["general"]:
if outputs[idx] > gen_th:
tag_name = self.tag_names[idx].replace("_", " ")
res["general"][tag_name] = float(outputs[idx])
tag_categories_for_translation["general"].append(tag_name)
for idx in self.categories["character"]:
if outputs[idx] > char_th:
tag_name = self.tag_names[idx].replace("_", " ")
res["characters"][tag_name] = float(outputs[idx])
tag_categories_for_translation["characters"].append(tag_name)
res["general"] = dict(sorted(res["general"].items(), key=lambda kv: kv[1], reverse=True))
res["characters"] = dict(sorted(res["characters"].items(), key=lambda kv: kv[1], reverse=True))
res["ratings"] = dict(sorted(res["ratings"].items(), key=lambda kv: kv[1], reverse=True))
tag_categories_for_translation["general"] = list(res["general"].keys())
tag_categories_for_translation["characters"] = list(res["characters"].keys())
tag_categories_for_translation["ratings"] = list(res["ratings"].keys())
return res, tag_categories_for_translation
# 全局 Tagger 实例
try:
tagger_instance = Tagger()
except RuntimeError as e:
print(f"应用启动时Tagger初始化失败: {e}")
tagger_instance = None # 允许应用启动,但在处理时会失败
# ------------------------------------------------------------------
# Gradio UI
# ------------------------------------------------------------------
custom_css = """
.label-container {
max-height: 300px;
overflow-y: auto;
border: 1px solid #ddd;
padding: 10px;
border-radius: 5px;
background-color: #f9f9f9;
}
.tag-item {
display: flex;
justify-content: space-between;
align-items: center;
margin: 2px 0;
padding: 2px 5px;
border-radius: 3px;
background-color: #fff;
transition: background-color 0.2s;
}
.tag-item:hover {
background-color: #f0f0f0;
}
.tag-en {
font-weight: bold;
color: #333;
cursor: pointer; /* Indicates clickable */
}
.tag-zh {
color: #666;
margin-left: 10px;
}
.tag-score {
color: #999;
font-size: 0.9em;
}
.btn-analyze-container { /* Custom class for analyze button container */
margin-top: 15px;
margin-bottom: 15px;
}
"""
_js_functions = """
function copyToClipboard(text) {
// --- 调试信息 ---
console.log('copyToClipboard function was called.');
console.log('Received text:', text);
// console.trace(); // 如果需要更详细的调用栈信息,可以取消这行注释
// --- 保护性检查 ---
// 如果 text 未定义或为 null,则不执行后续操作,并打印警告
if (typeof text === 'undefined' || text === null) {
console.warn('copyToClipboard was called with undefined or null text. Aborting this specific copy operation.');
// 在这种情况下,我们不应该尝试复制,也不应该显示“已复制”的提示
return;
}
navigator.clipboard.writeText(text).then(() => {
// console.log('Tag copied to clipboard: ' + text); // 成功复制的日志(可选)
const feedback = document.createElement('div');
// 确保 text 是字符串类型,再进行 substring 操作
let displayText = String(text); // 将 text 转换为字符串以防万一
displayText = displayText.substring(0, 30) + (displayText.length > 30 ? '...' : '');
feedback.textContent = '已复制: ' + displayText;
feedback.style.position = 'fixed';
feedback.style.bottom = '20px';
feedback.style.left = '50%';
feedback.style.transform = 'translateX(-50%)';
feedback.style.backgroundColor = '#4CAF50';
feedback.style.color = 'white';
feedback.style.padding = '10px 20px';
feedback.style.borderRadius = '5px';
feedback.style.zIndex = '10000';
feedback.style.transition = 'opacity 0.5s ease-out';
document.body.appendChild(feedback);
setTimeout(() => {
feedback.style.opacity = '0';
setTimeout(() => {
if (document.body.contains(feedback)) { // 确保元素还在DOM中
document.body.removeChild(feedback);
}
}, 500);
}, 1500);
}).catch(err => {
console.error('Failed to copy tag. Error:', err, 'Attempted to copy text:', text);
// 可以考虑也给用户一个错误提示,但原版 alert 可能体验不佳
// alert('复制失败: ' + err);
const errorFeedback = document.createElement('div');
errorFeedback.textContent = '复制操作失败!'; // 更友好的错误提示
errorFeedback.style.position = 'fixed';
errorFeedback.style.bottom = '20px';
errorFeedback.style.left = '50%';
errorFeedback.style.transform = 'translateX(-50%)';
errorFeedback.style.backgroundColor = '#D32F2F'; // 红色背景表示错误
errorFeedback.style.color = 'white';
errorFeedback.style.padding = '10px 20px';
errorFeedback.style.borderRadius = '5px';
errorFeedback.style.zIndex = '10000';
errorFeedback.style.transition = 'opacity 0.5s ease-out';
document.body.appendChild(errorFeedback);
setTimeout(() => {
errorFeedback.style.opacity = '0';
setTimeout(() => {
if (document.body.contains(errorFeedback)) {
document.body.removeChild(errorFeedback);
}
}, 500);
}, 2500);
});
}
"""
with gr.Blocks(theme=gr.themes.Soft(), title="AI 图像标签分析器", css=custom_css, js=_js_functions) as demo:
gr.Markdown("# 🖼️ AI 图像标签分析器")
gr.Markdown("上传图片自动识别标签,支持中英文显示和一键复制。[NovelAI在线绘画](https://nai.idlecloud.cc/)")
state_res = gr.State({})
state_translations_dict = gr.State({})
state_tag_categories_for_translation = gr.State({})
with gr.Row():
with gr.Column(scale=1):
img_in = gr.Image(type="pil", label="上传图片", height=300)
btn = gr.Button("🚀 开始分析", variant="primary", elem_classes=["btn-analyze-container"])
with gr.Accordion("⚙️ 高级设置", open=False):
gen_slider = gr.Slider(0, 1, value=0.35, step=0.01, label="通用标签阈值", info="越高 → 标签更少更准")
char_slider = gr.Slider(0, 1, value=0.85, step=0.01, label="角色标签阈值", info="推荐保持较高阈值")
show_tag_scores = gr.Checkbox(True, label="在列表中显示标签置信度")
with gr.Accordion("📊 标签汇总设置", open=True):
gr.Markdown("选择要包含在下方汇总文本框中的标签类别:")
with gr.Row():
sum_general = gr.Checkbox(True, label="通用标签", min_width=50)
sum_char = gr.Checkbox(True, label="角色标签", min_width=50)
sum_rating = gr.Checkbox(False, label="评分标签", min_width=50)
sum_sep = gr.Dropdown(["逗号", "换行", "空格"], value="逗号", label="标签之间的分隔符")
sum_show_zh = gr.Checkbox(False, label="在汇总中显示中文翻译")
processing_info = gr.Markdown("", visible=False)
with gr.Column(scale=2):
with gr.Tabs():
with gr.TabItem("🏷️ 通用标签"):
out_general = gr.HTML(label="General Tags")
with gr.TabItem("👤 角色标签"):
gr.Markdown("<p style='color:gray; font-size:small;'>提示:角色标签推测基于截至2024年2月的数据。</p>")
out_char = gr.HTML(label="Character Tags")
with gr.TabItem("⭐ 评分标签"):
out_rating = gr.HTML(label="Rating Tags")
gr.Markdown("### 标签汇总结果")
out_summary = gr.Textbox(
label="标签汇总",
placeholder="分析完成后,此处将显示汇总的英文标签...",
lines=5,
show_copy_button=True
)
# ----------------- 辅助函数 -----------------
def format_tags_html(tags_dict, translations_list, category_name, show_scores=True, show_translation_in_list=True):
if not tags_dict:
return "<p>暂无标签</p>"
html = '<div class="label-container">'
if not isinstance(translations_list, list):
translations_list = []
tag_keys = list(tags_dict.keys())
for i, tag in enumerate(tag_keys):
score = tags_dict[tag]
escaped_tag = tag.replace("'", "\\'") # Escape for JS
html += '<div class="tag-item">'
tag_display_html = f'<span class="tag-en" onclick="copyToClipboard(\'{escaped_tag}\')">{tag}</span>'
if show_translation_in_list and i < len(translations_list) and translations_list[i]:
tag_display_html += f'<span class="tag-zh">({translations_list[i]})</span>'
html += f'<div>{tag_display_html}</div>'
if show_scores:
html += f'<span class="tag-score">{score:.3f}</span>'
html += '</div>'
html += '</div>'
return html
def generate_summary_text_content(
current_res, current_translations_dict,
s_gen, s_char, s_rat, s_sep_type, s_show_zh
):
if not current_res:
return "请先分析图像或选择要汇总的标签类别。"
summary_parts = []
separators = {"逗号": ", ", "换行": "\n", "空格": " "}
separator = separators.get(s_sep_type, ", ")
categories_to_summarize = []
if s_gen: categories_to_summarize.append("general")
if s_char: categories_to_summarize.append("characters")
if s_rat: categories_to_summarize.append("ratings")
if not categories_to_summarize:
return "请至少选择一个标签类别进行汇总。"
for cat_key in categories_to_summarize:
if current_res.get(cat_key):
tags_to_join = []
cat_tags_en = list(current_res[cat_key].keys())
cat_translations = current_translations_dict.get(cat_key, [])
for i, en_tag in enumerate(cat_tags_en):
if s_show_zh and i < len(cat_translations) and cat_translations[i]:
tags_to_join.append(f"{en_tag}({cat_translations[i]})")
else:
tags_to_join.append(en_tag)
if tags_to_join: # only add if there are tags for this category
summary_parts.append(separator.join(tags_to_join))
# Join parts with double newline for readability if multiple categories present and separator is not newline
joiner = "\n\n" if separator != "\n" and len(summary_parts) > 1 else separator if separator == "\n" else " "
final_summary = joiner.join(summary_parts)
return final_summary if final_summary else "选定的类别中没有找到标签。"
# ----------------- 主要处理回调 -----------------
def process_image_and_generate_outputs(
img, g_th, c_th, s_scores, # Main inputs
s_gen, s_char, s_rat, s_sep, s_zh_in_sum
):
if img is None:
yield (
gr.update(interactive=True, value="🚀 开始分析"),
gr.update(visible=True, value="❌ 请先上传图片。"),
"", "", "", "",
gr.update(placeholder="请先上传图片并开始分析..."),
{}, {}, {}
)
return
if tagger_instance is None:
yield (
gr.update(interactive=True, value="🚀 开始分析"),
gr.update(visible=True, value="❌ 分析器未成功初始化,请检查控制台错误。"),
"", "", "", "",
gr.update(placeholder="分析器初始化失败..."),
{}, {}, {}
)
return
yield (
gr.update(interactive=False, value="🔄 处理中..."),
gr.update(visible=True, value="🔄 正在分析图像,请稍候..."),
gr.HTML(value="<p>分析中...</p>"), # General
gr.HTML(value="<p>分析中...</p>"), # Character
gr.HTML(value="<p>分析中...</p>"), # Rating
gr.update(value="分析中,请稍候..."), # Summary
{}, {}, {} # Clear states initially
)
try:
# 1. Predict tags
res, tag_categories_original_order = tagger_instance.predict(img, g_th, c_th)
all_tags_to_translate = []
for cat_key in ["general", "characters", "ratings"]:
all_tags_to_translate.extend(tag_categories_original_order.get(cat_key, []))
all_translations_flat = []
if all_tags_to_translate:
all_translations_flat = translate_texts(all_tags_to_translate, src_lang="auto", tgt_lang="zh")
current_translations_dict = {}
offset = 0
for cat_key in ["general", "characters", "ratings"]:
cat_original_tags = tag_categories_original_order.get(cat_key, [])
num_tags_in_cat = len(cat_original_tags)
if num_tags_in_cat > 0:
current_translations_dict[cat_key] = all_translations_flat[offset : offset + num_tags_in_cat]
offset += num_tags_in_cat
else:
current_translations_dict[cat_key] = []
general_html = format_tags_html(res.get("general", {}), current_translations_dict.get("general", []), "general", s_scores, True)
char_html = format_tags_html(res.get("characters", {}), current_translations_dict.get("characters", []), "characters", s_scores, True)
rating_html = format_tags_html(res.get("ratings", {}), current_translations_dict.get("ratings", []), "ratings", s_scores, True)
summary_text = generate_summary_text_content(
res, current_translations_dict,
s_gen, s_char, s_rat, s_sep, s_zh_in_sum
)
yield (
gr.update(interactive=True, value="🚀 开始分析"),
gr.update(visible=True, value="✅ 分析完成!"),
general_html,
char_html,
rating_html,
gr.update(value=summary_text),
res,
current_translations_dict,
tag_categories_original_order
)
except Exception as e:
import traceback
tb_str = traceback.format_exc()
print(f"处理时发生错误: {e}\n{tb_str}")
yield (
gr.update(interactive=True, value="🚀 开始分析"),
gr.update(visible=True, value=f"❌ 处理失败: {str(e)}"),
"<p>处理出错</p>", "<p>处理出错</p>", "<p>处理出错</p>",
gr.update(value=f"错误: {str(e)}", placeholder="分析失败..."),
{}, {}, {}
)
# ----------------- 更新汇总文本的回调 -----------------
def update_summary_display(
s_gen, s_char, s_rat, s_sep, s_zh_in_sum,
current_res_from_state, current_translations_from_state
):
if not current_res_from_state:
return gr.update(placeholder="请先完成一次图像分析以生成汇总。", value="")
new_summary_text = generate_summary_text_content(
current_res_from_state, current_translations_from_state,
s_gen, s_char, s_rat, s_sep, s_zh_in_sum
)
return gr.update(value=new_summary_text)
# ----------------- 绑定事件 -----------------
btn.click(
process_image_and_generate_outputs,
inputs=[
img_in, gen_slider, char_slider, show_tag_scores,
sum_general, sum_char, sum_rating, sum_sep, sum_show_zh
],
outputs=[
btn, processing_info,
out_general, out_char, out_rating,
out_summary,
state_res, state_translations_dict, state_tag_categories_for_translation
],
# show_progress="full" # Gradio's built-in progress
)
summary_controls = [sum_general, sum_char, sum_rating, sum_sep, sum_show_zh]
for ctrl in summary_controls:
ctrl.change(
fn=update_summary_display,
inputs=summary_controls + [state_res, state_translations_dict],
outputs=[out_summary],
# show_progress=False # Typically fast, no need for progress indicator
)
# ------------------------------------------------------------------
# 启动
# ------------------------------------------------------------------
if __name__ == "__main__":
if tagger_instance is None:
print("CRITICAL: Tagger 未能初始化,应用功能将受限。请检查之前的错误信息。")
demo.launch(server_name="0.0.0.0", server_port=7860)