Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
import plotly.express as px | |
import plotly.graph_objects as go | |
def show(): | |
st.markdown('<div class="main-header">π Dataset: MM-OR</div>', unsafe_allow_html=True) | |
st.markdown("---") | |
st.markdown("## ποΈ MM-OR: A Large-scale Multimodal Operating Room Dataset") | |
st.markdown(""" | |
This project utilizes the **MM-OR** dataset, a comprehensive collection of data recorded in a realistic operating room environment. | |
It is designed to support research in surgical workflow analysis, human activity recognition, and context-aware systems in healthcare. | |
""") | |
# Dataset overview | |
st.markdown("### π Dataset High-Level Statistics") | |
col1, col2, col3, col4 = st.columns(4) | |
with col1: | |
st.metric( | |
label="πΉ Surgical Procedures", | |
value="10", | |
) | |
with col2: | |
st.metric( | |
label="β±οΈ Total Duration", | |
value=">100 hours", | |
) | |
with col3: | |
st.metric( | |
label="π·οΈ Modalities", | |
value="3 (Video, Audio, Depth)", | |
) | |
with col4: | |
st.metric( | |
label="π Total Size", | |
value="~12 TB", | |
) | |
st.markdown("---") | |
# Dataset categories | |
st.markdown("### π₯ Dataset Details") | |
st.info("The MM-OR dataset is the primary source of data for training and evaluating the models in this system.") | |
col1, col2 = st.columns(2) | |
with col1: | |
st.markdown("#### Key Features") | |
st.markdown(""" | |
- **Multimodal Data**: Includes synchronized video, multi-channel audio, and depth information. | |
- **Multiple Views**: Video captured from multiple camera perspectives to provide a comprehensive view of the operating room. | |
- **Rich Annotations**: Detailed annotations of: | |
- Surgical roles (e.g., primary surgeon, assistant, nurse). | |
- Atomic actions and complex activities. | |
- Interactions between team members. | |
- **Realistic Environment**: Data was collected in a high-fidelity simulated operating room. | |
""") | |
with col2: | |
st.markdown("#### Data Modalities") | |
st.image("https://www.researchgate.net/publication/359174963/figure/fig1/AS:1143128108556288@1649553881835/An-overview-of-our-data-acquisition-system-in-the-operating-room-OR-We-record.jpg", | |
caption="Overview of the data acquisition system in the operating room.") | |
st.markdown("---") | |
st.markdown("### π Data Distribution") | |
# Create sample data for visualization | |
procedure_data = { | |
'Surgical Procedure': [f'Procedure {i+1}' for i in range(10)], | |
'Duration (hours)': np.random.uniform(8, 12, 10).round(1), | |
'Number of Annotations': np.random.randint(1500, 3000, 10) | |
} | |
df_procedures = pd.DataFrame(procedure_data) | |
fig = px.bar(df_procedures, x='Surgical Procedure', y='Duration (hours)', | |
title='Duration per Surgical Procedure', | |
labels={'Duration (hours)': 'Duration (hours)'}, | |
color='Surgical Procedure') | |
st.plotly_chart(fig, use_container_width=True) | |
st.markdown("For more information, please refer to the original publication: *MM-OR: A Large-scale Multimodal Operating Room Dataset for Human Activity Recognition*.") | |
st.markdown("The dataset is available on GitHub: [MM-OR Dataset](https://github.com/egeozsoy/MM-OR)") | |