File size: 9,927 Bytes
4f7b5ea
 
7bcda1e
4f7b5ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
345422a
4f7b5ea
 
 
 
 
345422a
4f7b5ea
 
 
 
 
 
 
 
 
 
 
 
02cc0a7
4f7b5ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7bcda1e
4f7b5ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
# -*- coding: utf-8 -*-
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved
import spaces
import logging,os
os.makedirs("/root/weights",exist_ok=True)
cmd="huggingface-cli download IndexTeam/AnisoraV3 --include=\"14B/*\" --local-dir=/root/weights --token %s"%os.environ['token']
os.system(cmd)

# os.environ["HF_ENDPOINT"]          = "https://hf-mirror.com"
from time import time as ttime
import argparse
from datetime import datetime
import logging
import sys
import warnings
from fastapi import FastAPI
import uvicorn
import gradio as gr
warnings.filterwarnings('ignore')

import torch, random
import torch.distributed as dist
from PIL import Image

import wan
from wan.image2video_if_oss import WanI2V
from wan.configs import WAN_CONFIGS, SIZE_CONFIGS, MAX_AREA_CONFIGS, SUPPORTED_SIZES
from wan.utils.prompt_extend import DashScopePromptExpander, QwenPromptExpander
from wan.utils.utils import cache_video, cache_image, str2bool

value2speed={
    "原版":0,
    "加速版":1,
}
EXAMPLE_PROMPT = {
    "t2v-1.3B": {
        "prompt": "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage.",
    },
    "t2v-14B": {
        "prompt": "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage.",
    },
    "t2i-14B": {
        "prompt": "一个朴素端庄的美人",
    },
    "i2v-14B": {
        "prompt":
            "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside.",
        "image":
            "examples/i2v_input.JPG",
    },
}


def _validate_args(args):
    # Basic check
    assert args.ckpt_dir is not None, "Please specify the checkpoint directory."
    assert args.task in WAN_CONFIGS, f"Unsupport task: {args.task}"
    assert args.task in EXAMPLE_PROMPT, f"Unsupport task: {args.task}"

    # The default sampling steps are 40 for image-to-video tasks and 50 for text-to-video tasks.
    if args.sample_steps is None:
        args.sample_steps = 40 if "i2v" in args.task else 50

    if args.sample_shift is None:
        args.sample_shift = 5.0
        if "i2v" in args.task and args.size in ["832*480", "480*832"]:
            args.sample_shift = 3.0

    # The default number of frames are 1 for text-to-image tasks and 81 for other tasks.
    if args.frame_num is None:
        args.frame_num = 1 if "t2i" in args.task else 81

    # T2I frame_num check
    if "t2i" in args.task:
        assert args.frame_num == 1, f"Unsupport frame_num {args.frame_num} for task {args.task}"

    args.base_seed = args.base_seed if args.base_seed >= 0 else random.randint(
        0, sys.maxsize)
    # Size check
    assert args.size in SUPPORTED_SIZES[
        args.
        task], f"Unsupport size {args.size} for task {args.task}, supported sizes are: {', '.join(SUPPORTED_SIZES[args.task])}"


def _parse_args():
    parser = argparse.ArgumentParser(
        description="Generate a image or video from a text prompt or image using Wan"
    )
    parser.add_argument(
        "--task",
        type=str,
        default="i2v-14B",
        choices=list(WAN_CONFIGS.keys()),
        help="The task to run.")
    parser.add_argument(
        "--size",
        type=str,
        default="960*544",
        choices=list(SIZE_CONFIGS.keys()),
        help="The area (width*height) of the generated video. For the I2V task, the aspect ratio of the output video will follow that of the input image."
    )
    parser.add_argument(
        "--frame_num",
        type=int,
        default=None,
        help="How many frames to sample from a image or video. The number should be 4n+1"
    )
    parser.add_argument(
        "--ckpt_dir",
        type=str,
        default="/root/weights/14B",
        help="The path to the checkpoint directory.")
    parser.add_argument(
        "--offload_model",
        type=str2bool,
        default=None,
        help="Whether to offload the model to CPU after each model forward, reducing GPU memory usage."
    )
    parser.add_argument(
        "--ulysses_size",
        type=int,
        default=1,
        help="The size of the ulysses parallelism in DiT.")
    parser.add_argument(
        "--ring_size",
        type=int,
        default=1,
        help="The size of the ring attention parallelism in DiT.")
    parser.add_argument(
        "--t5_fsdp",
        action="store_true",
        default=False,
        help="Whether to use FSDP for T5.")
    parser.add_argument(
        "--t5_cpu",
        action="store_true",
        default=False,
        help="Whether to place T5 model on CPU.")
    parser.add_argument(
        "--dit_fsdp",
        action="store_true",
        default=False,
        help="Whether to use FSDP for DiT.")
    parser.add_argument(
        "--save_file",
        type=str,
        default=None,
        help="The file to save the generated image or video to.")
    parser.add_argument(
        "--prompt",
        type=str,
        default=None,
        help="The prompt to generate the image or video from.")
    parser.add_argument(
        "--use_prompt_extend",
        action="store_true",
        default=False,
        help="Whether to use prompt extend.")
    parser.add_argument(
        "--prompt_extend_method",
        type=str,
        default="local_qwen",
        choices=["dashscope", "local_qwen"],
        help="The prompt extend method to use.")
    parser.add_argument(
        "--prompt_extend_model",
        type=str,
        default=None,
        help="The prompt extend model to use.")
    parser.add_argument(
        "--prompt_extend_target_lang",
        type=str,
        default="ch",
        choices=["ch", "en"],
        help="The target language of prompt extend.")
    parser.add_argument(
        "--base_seed",
        type=int,
        default=-1,
        help="The seed to use for generating the image or video.")
    parser.add_argument(
        "--image",
        type=str,
        default=None,
        help="The image to generate the video from.")
    parser.add_argument(
        "--sample_solver",
        type=str,
        default='unipc',
        choices=['unipc', 'dpm++'],
        help="The solver used to sample.")
    parser.add_argument(
        "--sample_steps", type=int, default=None, help="The sampling steps.")
    parser.add_argument(
        "--sample_shift",
        type=float,
        default=None,
        help="Sampling shift factor for flow matching schedulers.")
    parser.add_argument(
        "--sample_guide_scale",
        type=float,
        default=5.0,
        help="Classifier free guidance scale.")

    args = parser.parse_args()

    _validate_args(args)

    return args


def _init_logging(rank):
    # logging
    if rank == 0:
        # set format
        logging.basicConfig(
            level=logging.INFO,
            format="[%(asctime)s] %(levelname)s: %(message)s",
            handlers=[logging.StreamHandler(stream=sys.stdout)])
    else:
        logging.basicConfig(level=logging.ERROR)

def generate(args):
    rank = int(os.getenv("RANK", 0))
    world_size = int(os.getenv("WORLD_SIZE", 1))
    local_rank = int(os.getenv("LOCAL_RANK", 0))
    device = local_rank
    _init_logging(rank)

    if args.offload_model is None:
        args.offload_model = False if world_size > 1 else True
        logging.info(
            f"offload_model is not specified, set to {args.offload_model}.")

    cfg = WAN_CONFIGS[args.task]
    if args.ulysses_size > 1:
        assert cfg.num_heads % args.ulysses_size == 0, f"`num_heads` must be divisible by `ulysses_size`."

    logging.info(f"Generation job args: {args}")
    logging.info(f"Generation model config: {cfg}")

    if dist.is_initialized():
        base_seed = [args.base_seed] if rank == 0 else [None]
        dist.broadcast_object_list(base_seed, src=0)
        args.base_seed = base_seed[0]

    logging.info("Creating WanI2V pipeline.")
    # wan_i2v = wan.WanI2V(
    wan_i2v = WanI2V(
        config=cfg,
        checkpoint_dir=args.ckpt_dir,
        device_id=device,
        rank=rank,
        t5_fsdp=args.t5_fsdp,
        dit_fsdp=args.dit_fsdp,
        use_usp=(args.ulysses_size > 1 or args.ring_size > 1),
        t5_cpu=args.t5_cpu,
    )

    @spaces.GPU
    def generate_i2v(prompt,img,seed,nf,speed):
        logging.info("Generating video ...")
        save_file="output/%s-%s-%s-%s.mp4"%(seed,nf,speed,int(ttime()))
        video = wan_i2v.generate(
            prompt,
            img,
            max_area=MAX_AREA_CONFIGS[args.size],
            frame_num=int(nf)*16+1,#args.frame_num
            shift=args.sample_shift,
            sample_solver=args.sample_solver,
            sampling_steps=args.sample_steps,
            guide_scale=args.sample_guide_scale,
            seed=seed,#args.base_seed,
            offload_model=args.offload_model,
            speed=value2speed[speed]
        )
        if rank==0:
            video_update = gr.update(visible=True, value=save_file)
            seed_update = gr.update(visible=True, value=seed)
            cache_video(
                tensor=video[None],
                save_file=save_file,
                fps=cfg.sample_fps,
                nrow=1,
                normalize=True,
                value_range=(-1, 1))
            return save_file, video_update, seed_update
    if rank == 0:
        from app_os import DEMO
        demo=DEMO(generate_i2v).demo
        demo.launch()


if __name__ == "__main__":
    args = _parse_args()
    generate(args)