Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,927 Bytes
4f7b5ea 7bcda1e 4f7b5ea 345422a 4f7b5ea 345422a 4f7b5ea 02cc0a7 4f7b5ea 7bcda1e 4f7b5ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
# -*- coding: utf-8 -*-
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved
import spaces
import logging,os
os.makedirs("/root/weights",exist_ok=True)
cmd="huggingface-cli download IndexTeam/AnisoraV3 --include=\"14B/*\" --local-dir=/root/weights --token %s"%os.environ['token']
os.system(cmd)
# os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
from time import time as ttime
import argparse
from datetime import datetime
import logging
import sys
import warnings
from fastapi import FastAPI
import uvicorn
import gradio as gr
warnings.filterwarnings('ignore')
import torch, random
import torch.distributed as dist
from PIL import Image
import wan
from wan.image2video_if_oss import WanI2V
from wan.configs import WAN_CONFIGS, SIZE_CONFIGS, MAX_AREA_CONFIGS, SUPPORTED_SIZES
from wan.utils.prompt_extend import DashScopePromptExpander, QwenPromptExpander
from wan.utils.utils import cache_video, cache_image, str2bool
value2speed={
"原版":0,
"加速版":1,
}
EXAMPLE_PROMPT = {
"t2v-1.3B": {
"prompt": "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage.",
},
"t2v-14B": {
"prompt": "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage.",
},
"t2i-14B": {
"prompt": "一个朴素端庄的美人",
},
"i2v-14B": {
"prompt":
"Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside.",
"image":
"examples/i2v_input.JPG",
},
}
def _validate_args(args):
# Basic check
assert args.ckpt_dir is not None, "Please specify the checkpoint directory."
assert args.task in WAN_CONFIGS, f"Unsupport task: {args.task}"
assert args.task in EXAMPLE_PROMPT, f"Unsupport task: {args.task}"
# The default sampling steps are 40 for image-to-video tasks and 50 for text-to-video tasks.
if args.sample_steps is None:
args.sample_steps = 40 if "i2v" in args.task else 50
if args.sample_shift is None:
args.sample_shift = 5.0
if "i2v" in args.task and args.size in ["832*480", "480*832"]:
args.sample_shift = 3.0
# The default number of frames are 1 for text-to-image tasks and 81 for other tasks.
if args.frame_num is None:
args.frame_num = 1 if "t2i" in args.task else 81
# T2I frame_num check
if "t2i" in args.task:
assert args.frame_num == 1, f"Unsupport frame_num {args.frame_num} for task {args.task}"
args.base_seed = args.base_seed if args.base_seed >= 0 else random.randint(
0, sys.maxsize)
# Size check
assert args.size in SUPPORTED_SIZES[
args.
task], f"Unsupport size {args.size} for task {args.task}, supported sizes are: {', '.join(SUPPORTED_SIZES[args.task])}"
def _parse_args():
parser = argparse.ArgumentParser(
description="Generate a image or video from a text prompt or image using Wan"
)
parser.add_argument(
"--task",
type=str,
default="i2v-14B",
choices=list(WAN_CONFIGS.keys()),
help="The task to run.")
parser.add_argument(
"--size",
type=str,
default="960*544",
choices=list(SIZE_CONFIGS.keys()),
help="The area (width*height) of the generated video. For the I2V task, the aspect ratio of the output video will follow that of the input image."
)
parser.add_argument(
"--frame_num",
type=int,
default=None,
help="How many frames to sample from a image or video. The number should be 4n+1"
)
parser.add_argument(
"--ckpt_dir",
type=str,
default="/root/weights/14B",
help="The path to the checkpoint directory.")
parser.add_argument(
"--offload_model",
type=str2bool,
default=None,
help="Whether to offload the model to CPU after each model forward, reducing GPU memory usage."
)
parser.add_argument(
"--ulysses_size",
type=int,
default=1,
help="The size of the ulysses parallelism in DiT.")
parser.add_argument(
"--ring_size",
type=int,
default=1,
help="The size of the ring attention parallelism in DiT.")
parser.add_argument(
"--t5_fsdp",
action="store_true",
default=False,
help="Whether to use FSDP for T5.")
parser.add_argument(
"--t5_cpu",
action="store_true",
default=False,
help="Whether to place T5 model on CPU.")
parser.add_argument(
"--dit_fsdp",
action="store_true",
default=False,
help="Whether to use FSDP for DiT.")
parser.add_argument(
"--save_file",
type=str,
default=None,
help="The file to save the generated image or video to.")
parser.add_argument(
"--prompt",
type=str,
default=None,
help="The prompt to generate the image or video from.")
parser.add_argument(
"--use_prompt_extend",
action="store_true",
default=False,
help="Whether to use prompt extend.")
parser.add_argument(
"--prompt_extend_method",
type=str,
default="local_qwen",
choices=["dashscope", "local_qwen"],
help="The prompt extend method to use.")
parser.add_argument(
"--prompt_extend_model",
type=str,
default=None,
help="The prompt extend model to use.")
parser.add_argument(
"--prompt_extend_target_lang",
type=str,
default="ch",
choices=["ch", "en"],
help="The target language of prompt extend.")
parser.add_argument(
"--base_seed",
type=int,
default=-1,
help="The seed to use for generating the image or video.")
parser.add_argument(
"--image",
type=str,
default=None,
help="The image to generate the video from.")
parser.add_argument(
"--sample_solver",
type=str,
default='unipc',
choices=['unipc', 'dpm++'],
help="The solver used to sample.")
parser.add_argument(
"--sample_steps", type=int, default=None, help="The sampling steps.")
parser.add_argument(
"--sample_shift",
type=float,
default=None,
help="Sampling shift factor for flow matching schedulers.")
parser.add_argument(
"--sample_guide_scale",
type=float,
default=5.0,
help="Classifier free guidance scale.")
args = parser.parse_args()
_validate_args(args)
return args
def _init_logging(rank):
# logging
if rank == 0:
# set format
logging.basicConfig(
level=logging.INFO,
format="[%(asctime)s] %(levelname)s: %(message)s",
handlers=[logging.StreamHandler(stream=sys.stdout)])
else:
logging.basicConfig(level=logging.ERROR)
def generate(args):
rank = int(os.getenv("RANK", 0))
world_size = int(os.getenv("WORLD_SIZE", 1))
local_rank = int(os.getenv("LOCAL_RANK", 0))
device = local_rank
_init_logging(rank)
if args.offload_model is None:
args.offload_model = False if world_size > 1 else True
logging.info(
f"offload_model is not specified, set to {args.offload_model}.")
cfg = WAN_CONFIGS[args.task]
if args.ulysses_size > 1:
assert cfg.num_heads % args.ulysses_size == 0, f"`num_heads` must be divisible by `ulysses_size`."
logging.info(f"Generation job args: {args}")
logging.info(f"Generation model config: {cfg}")
if dist.is_initialized():
base_seed = [args.base_seed] if rank == 0 else [None]
dist.broadcast_object_list(base_seed, src=0)
args.base_seed = base_seed[0]
logging.info("Creating WanI2V pipeline.")
# wan_i2v = wan.WanI2V(
wan_i2v = WanI2V(
config=cfg,
checkpoint_dir=args.ckpt_dir,
device_id=device,
rank=rank,
t5_fsdp=args.t5_fsdp,
dit_fsdp=args.dit_fsdp,
use_usp=(args.ulysses_size > 1 or args.ring_size > 1),
t5_cpu=args.t5_cpu,
)
@spaces.GPU
def generate_i2v(prompt,img,seed,nf,speed):
logging.info("Generating video ...")
save_file="output/%s-%s-%s-%s.mp4"%(seed,nf,speed,int(ttime()))
video = wan_i2v.generate(
prompt,
img,
max_area=MAX_AREA_CONFIGS[args.size],
frame_num=int(nf)*16+1,#args.frame_num
shift=args.sample_shift,
sample_solver=args.sample_solver,
sampling_steps=args.sample_steps,
guide_scale=args.sample_guide_scale,
seed=seed,#args.base_seed,
offload_model=args.offload_model,
speed=value2speed[speed]
)
if rank==0:
video_update = gr.update(visible=True, value=save_file)
seed_update = gr.update(visible=True, value=seed)
cache_video(
tensor=video[None],
save_file=save_file,
fps=cfg.sample_fps,
nrow=1,
normalize=True,
value_range=(-1, 1))
return save_file, video_update, seed_update
if rank == 0:
from app_os import DEMO
demo=DEMO(generate_i2v).demo
demo.launch()
if __name__ == "__main__":
args = _parse_args()
generate(args)
|