File size: 18,711 Bytes
4f7b5ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7381712
4f7b5ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import sys
sys.path.append('../OSS')
from OSS.OSS import search_OSS_video, infer_OSS
from OSS.model_wrap import _WrappedModel_Wan
import gc
import logging
import math
import os
import pdb
import random
import sys
import types
from contextlib import contextmanager
from functools import partial

import numpy as np
import torch
import torch.cuda.amp as amp
import torch.distributed as dist
import torchvision.transforms.functional as TF
from tqdm import tqdm

from .distributed.fsdp import shard_model
from .modules.clip import CLIPModel
from .modules.model_infer import WanModel
from .modules.t5 import T5EncoderModel
from .modules.vae import WanVAE
# from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler,get_sampling_sigmas, retrieve_timesteps)
from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler)
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler

from diffusers import FlowMatchEulerDiscreteScheduler

import inspect
import math
from typing import Callable, Dict, List, Optional, Tuple, Union

import torch
import numpy as np
import random
def set_seed(seed):
    if seed == -1:
        seed = random.randint(0, 1000000)
    seed = int(seed)
    random.seed(seed)
    os.environ["PYTHONHASHSEED"] = str(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
class FlowMatchScheduler():

    def __init__(self, num_inference_steps=100, num_train_timesteps=1000, shift=3.0, sigma_max=1.0, sigma_min=0.003 / 1.002, inverse_timesteps=False, extra_one_step=False, reverse_sigmas=False):
        self.num_train_timesteps = num_train_timesteps
        self.shift = shift
        self.sigma_max = sigma_max
        self.sigma_min = sigma_min
        self.inverse_timesteps = inverse_timesteps
        self.extra_one_step = extra_one_step
        self.reverse_sigmas = reverse_sigmas
        self.set_timesteps(num_inference_steps)

    def set_timesteps(self, num_inference_steps=100, denoising_strength=1.0, training=False, shift=None):
        if shift is not None:
            self.shift = shift
        sigma_start = self.sigma_min + (self.sigma_max - self.sigma_min) * denoising_strength
        if self.extra_one_step:
            self.sigmas = torch.linspace(sigma_start, self.sigma_min, num_inference_steps + 1)[:-1]
        else:
            self.sigmas = torch.linspace(sigma_start, self.sigma_min, num_inference_steps)
        if self.inverse_timesteps:
            self.sigmas = torch.flip(self.sigmas, dims=[0])
        self.sigmas = self.shift * self.sigmas / (1 + (self.shift - 1) * self.sigmas)
        if self.reverse_sigmas:
            self.sigmas = 1 - self.sigmas
        self.timesteps = self.sigmas * self.num_train_timesteps
        if training:
            x = self.timesteps
            y = torch.exp(-2 * ((x - num_inference_steps / 2) / num_inference_steps) ** 2)
            y_shifted = y - y.min()
            bsmntw_weighing = y_shifted * (num_inference_steps / y_shifted.sum())
            self.linear_timesteps_weights = bsmntw_weighing

    def step(self, model_output, timestep, sample, to_final=False):
        if isinstance(timestep, torch.Tensor):
            timestep = timestep.cpu()
        timestep_id = torch.argmin((self.timesteps - timestep).abs())
        sigma = self.sigmas[timestep_id]
        if to_final or timestep_id + 1 >= len(self.timesteps):
            sigma_ = 1 if (self.inverse_timesteps or self.reverse_sigmas) else 0
        else:
            sigma_ = self.sigmas[timestep_id + 1]
        prev_sample = sample + model_output * (sigma_ - sigma)
        return prev_sample

    def return_to_timestep(self, timestep, sample, sample_stablized):
        if isinstance(timestep, torch.Tensor):
            timestep = timestep.cpu()
        timestep_id = torch.argmin((self.timesteps - timestep).abs())
        sigma = self.sigmas[timestep_id]
        model_output = (sample - sample_stablized) / sigma
        return model_output

    def add_noise(self, original_samples, noise, timestep):
        if isinstance(timestep, torch.Tensor):
            timestep = timestep.cpu()
        timestep_id = torch.argmin((self.timesteps - timestep).abs())
        sigma = self.sigmas[timestep_id]
        sample = (1 - sigma) * original_samples + sigma * noise
        return sample

    def training_target(self, sample, noise, timestep):
        target = noise - sample
        return target

    def training_weight(self, timestep):
        timestep_id = torch.argmin((self.timesteps - timestep.to(self.timesteps.device)).abs())
        weights = self.linear_timesteps_weights[timestep_id]
        return weights
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
    scheduler,
    num_inference_steps: Optional[int] = None,
    device: Optional[Union[str, torch.device]] = None,
    timesteps: Optional[List[int]] = None,
    sigmas: Optional[List[float]] = None,
    **kwargs,
):
    r"""
    Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
    custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.

    Args:
        scheduler (`SchedulerMixin`):
            The scheduler to get timesteps from.
        num_inference_steps (`int`):
            The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
            must be `None`.
        device (`str` or `torch.device`, *optional*):
            The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
        timesteps (`List[int]`, *optional*):
            Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
            `num_inference_steps` and `sigmas` must be `None`.
        sigmas (`List[float]`, *optional*):
            Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
            `num_inference_steps` and `timesteps` must be `None`.

    Returns:
        `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
        second element is the number of inference steps.
    """
    if timesteps is not None and sigmas is not None:
        raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
    if timesteps is not None:
        accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
        if not accepts_timesteps:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" timestep schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    elif sigmas is not None:
        accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
        if not accept_sigmas:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" sigmas schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    else:
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
        timesteps = scheduler.timesteps
    return timesteps, num_inference_steps

class WanI2V:

    def __init__(
        self,
        config,
        checkpoint_dir,
        device_id=0,
        rank=0,
        t5_fsdp=False,
        dit_fsdp=False,
        use_usp=False,
        t5_cpu=False,
        init_on_cpu=True,
    ):
        r"""
        Initializes the image-to-video generation model components.

        Args:
            config (EasyDict):
                Object containing model parameters initialized from config.py
            checkpoint_dir (`str`):
                Path to directory containing model checkpoints
            device_id (`int`,  *optional*, defaults to 0):
                Id of target GPU device
            rank (`int`,  *optional*, defaults to 0):
                Process rank for distributed training
            t5_fsdp (`bool`, *optional*, defaults to False):
                Enable FSDP sharding for T5 model
            dit_fsdp (`bool`, *optional*, defaults to False):
                Enable FSDP sharding for DiT model
            use_usp (`bool`, *optional*, defaults to False):
                Enable distribution strategy of USP.
            t5_cpu (`bool`, *optional*, defaults to False):
                Whether to place T5 model on CPU. Only works without t5_fsdp.
            init_on_cpu (`bool`, *optional*, defaults to True):
                Enable initializing Transformer Model on CPU. Only works without FSDP or USP.
        """
        self.device = torch.device(f"cuda:{device_id}")
        self.config = config
        self.rank = rank
        self.use_usp = use_usp
        self.t5_cpu = t5_cpu
        self.scheduler =FlowMatchScheduler(shift=5, sigma_min=0.0, extra_one_step=True)
        # self.scheduler =FlowMatchScheduler(shift=17, sigma_min=0.0, extra_one_step=True)
        self.num_train_timesteps = config.num_train_timesteps
        self.param_dtype = config.param_dtype

        shard_fn = partial(shard_model, device_id=device_id)
        self.text_encoder = T5EncoderModel(
            text_len=config.text_len,
            dtype=config.t5_dtype,
            device=torch.device('cpu'),
            checkpoint_path=os.path.join(checkpoint_dir, config.t5_checkpoint),
            tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer),
            shard_fn=shard_fn if t5_fsdp else None,
        )

        self.vae_stride = config.vae_stride
        self.patch_size = config.patch_size
        self.vae = WanVAE(
            vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint),
            device=self.device)

        self.clip = CLIPModel(
            dtype=config.clip_dtype,
            device=self.device,
            checkpoint_path=os.path.join(checkpoint_dir,config.clip_checkpoint),
            tokenizer_path=os.path.join(checkpoint_dir, config.clip_tokenizer))

        logging.info(f"Creating WanModel from {checkpoint_dir}")
        self.model = WanModel.from_pretrained(checkpoint_dir)
        self.model.eval().requires_grad_(False)

        if t5_fsdp or dit_fsdp or use_usp:
            init_on_cpu = False

        if use_usp:
            from xfuser.core.distributed import \
                get_sequence_parallel_world_size

            from .distributed.xdit_context_parallel import (usp_attn_forward,usp_dit_forward)
            for block in self.model.blocks:
                block.self_attn.forward = types.MethodType(
                    usp_attn_forward, block.self_attn)
            self.model.forward = types.MethodType(usp_dit_forward, self.model)
            self.sp_size = get_sequence_parallel_world_size()
        else:
            self.sp_size = 1

        if dist.is_initialized():
            dist.barrier()
        if dit_fsdp:
            self.model = shard_fn(self.model)
        else:
            if not init_on_cpu:
                self.model=self.model.to(self.device)

        self.sample_neg_prompt = config.sample_neg_prompt


    def generate(self,
                 input_prompt,
                 img,
                 max_area=720 * 1280,
                 frame_num=81,
                 shift=5.0,
                 sample_solver='unipc',
                 sampling_steps=40,
                 guide_scale=5.0,
                 n_prompt="",
                 seed=-1,
                 offload_model=True,

                 student_steps=20,
                 norm=2,
                 frame_type="all",
                 channel_type="all",
                 random_channel=False,
                 ):
        r"""
        Generates video frames from input image and text prompt using diffusion process.

        Args:
            input_prompt (`str`):
                Text prompt for content generation.
            img (PIL.Image.Image):
                Input image tensor. Shape: [3, H, W]
            max_area (`int`, *optional*, defaults to 720*1280):
                Maximum pixel area for latent space calculation. Controls video resolution scaling
            frame_num (`int`, *optional*, defaults to 81):
                How many frames to sample from a video. The number should be 4n+1
            shift (`float`, *optional*, defaults to 5.0):
                Noise schedule shift parameter. Affects temporal dynamics
                [NOTE]: If you want to generate a 480p video, it is recommended to set the shift value to 3.0.
            sample_solver (`str`, *optional*, defaults to 'unipc'):
                Solver used to sample the video.
            sampling_steps (`int`, *optional*, defaults to 40):
                Number of diffusion sampling steps. Higher values improve quality but slow generation
            guide_scale (`float`, *optional*, defaults 5.0):
                Classifier-free guidance scale. Controls prompt adherence vs. creativity
            n_prompt (`str`, *optional*, defaults to ""):
                Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt`
            seed (`int`, *optional*, defaults to -1):
                Random seed for noise generation. If -1, use random seed
            offload_model (`bool`, *optional*, defaults to True):
                If True, offloads models to CPU during generation to save VRAM

        Returns:
            torch.Tensor:
                Generated video frames tensor. Dimensions: (C, N H, W) where:
                - C: Color channels (3 for RGB)
                - N: Number of frames (81)
                - H: Frame height (from max_area)
                - W: Frame width from max_area)
        """
        img = TF.to_tensor(img).sub_(0.5).div_(0.5).to(self.device)

        F = frame_num
        h, w = img.shape[1:]
        aspect_ratio = h / w
        lat_h = round(
            np.sqrt(max_area * aspect_ratio) // self.vae_stride[1] //
            self.patch_size[1] * self.patch_size[1])
        lat_w = round(
            np.sqrt(max_area / aspect_ratio) // self.vae_stride[2] //
            self.patch_size[2] * self.patch_size[2])
        h = lat_h * self.vae_stride[1]
        w = lat_w * self.vae_stride[2]

        max_seq_len = ((F - 1) // self.vae_stride[0] + 1) * lat_h * lat_w // (
            self.patch_size[1] * self.patch_size[2])
        max_seq_len = int(math.ceil(max_seq_len / self.sp_size)) * self.sp_size

        seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
        if seed >= 0:
            set_seed(seed)
        seed_g = torch.Generator(device=self.device)
        seed_g.manual_seed(seed)
        noise = torch.randn(
            16,
            F//4+1,
            lat_h,
            lat_w,
            dtype=torch.float32,
            generator=seed_g,
            device=self.device)

        msk = torch.ones(1, F, lat_h, lat_w, device=self.device)
        msk[:, 1:] = 0
        msk = torch.concat([
            torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]
        ],dim=1)
        msk = msk.view(1, msk.shape[1] // 4, 4, lat_h, lat_w)
        msk = msk.transpose(1, 2)[0]

        if n_prompt == "":
            n_prompt = self.sample_neg_prompt

        # preprocess
        if not self.t5_cpu:
            self.text_encoder.model=self.text_encoder.model.to(self.device)
            context = self.text_encoder([input_prompt], self.device)
            context_null = self.text_encoder([n_prompt], self.device)
            if offload_model:
                self.text_encoder.model=self.text_encoder.model.cpu()
        else:
            context = self.text_encoder([input_prompt], torch.device('cpu'))
            context_null = self.text_encoder([n_prompt], torch.device('cpu'))
            context = [t.to(self.device) for t in context]
            context_null = [t.to(self.device) for t in context_null]

        self.clip.model=self.clip.model.to(self.device)
        clip_context = self.clip.visual([img[:, None, :, :]])
        if offload_model:
            self.clip.model=self.clip.model.cpu()
        torch.cuda.empty_cache()
        y = self.vae.encode([
            torch.concat([
                torch.nn.functional.interpolate(
                    img[None].cpu(), size=(h, w), mode='bicubic').transpose(
                        0, 1),
                torch.zeros(3, F-1, h, w)
            ],dim=1).to(self.device)
        ])[0]
        y = torch.concat([msk, y])

        @contextmanager
        def noop_no_sync():
            yield

        no_sync = getattr(self.model, 'no_sync', noop_no_sync)

        # sampling_steps=10
        # evaluation mode
        with amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync():
            device = self.device
            num_inference_steps=sampling_steps
            self.scheduler.set_timesteps(num_inference_steps, 1.0, shift=5.0)

            # sample videos
            latents = noise
            if offload_model:
                torch.cuda.empty_cache()

            self.model=self.model.to(self.device)

            # pre-process
            model = _WrappedModel_Wan(self.model, self.scheduler.timesteps, self.num_train_timesteps, context_null, guide_scale)
            model_kwargs = {
                'seq_len': max_seq_len,
                'y': [y],
                'clip_fea': clip_context,
            }
            latents = latents.unsqueeze(0)

            oss_steps=[2, 6, 18, 36, 47, 56, 65, 72, 78, 83, 87, 90, 92, 94, 95, 96]
            latents_oss = infer_OSS(oss_steps, model, latents, context, self.device, model_kwargs=model_kwargs)

            x0_oss = latents_oss

            if offload_model:
                self.model.cpu()
                torch.cuda.empty_cache()
            if self.rank == 0:
                videos_oss = self.vae.decode(x0_oss)

        del noise, latents
        # del self.scheduler
        if offload_model:
            gc.collect()
            torch.cuda.synchronize()
        if dist.is_initialized():
            dist.barrier()

        return videos_oss[0] if self.rank == 0 else None