Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,542 Bytes
e48545f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 |
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
import os
# DeepSpeed Team
import torch
import torch.distributed as dist
from fastvideo.utils.parallel_states import nccl_info
from typing import Any, Tuple
from torch import Tensor
from torch.nn import Module
def broadcast(input_: torch.Tensor):
src = nccl_info.group_id * nccl_info.sp_size
dist.broadcast(input_, src=src, group=nccl_info.group)
def _all_to_all_4D(
input: torch.tensor, scatter_idx: int = 2, gather_idx: int = 1, group=None
) -> torch.tensor:
"""
all-to-all for QKV
Args:
input (torch.tensor): a tensor sharded along dim scatter dim
scatter_idx (int): default 1
gather_idx (int): default 2
group : torch process group
Returns:
torch.tensor: resharded tensor (bs, seqlen/P, hc, hs)
"""
assert (
input.dim() == 4
), f"input must be 4D tensor, got {input.dim()} and shape {input.shape}"
seq_world_size = dist.get_world_size(group)
if scatter_idx == 2 and gather_idx == 1:
# input (torch.tensor): a tensor sharded along dim 1 (bs, seqlen/P, hc, hs) output: (bs, seqlen, hc/P, hs)
bs, shard_seqlen, hc, hs = input.shape
seqlen = shard_seqlen * seq_world_size
shard_hc = hc // seq_world_size
# transpose groups of heads with the seq-len parallel dimension, so that we can scatter them!
# (bs, seqlen/P, hc, hs) -reshape-> (bs, seq_len/P, P, hc/P, hs) -transpose(0,2)-> (P, seq_len/P, bs, hc/P, hs)
input_t = (
input.reshape(bs, shard_seqlen, seq_world_size, shard_hc, hs)
.transpose(0, 2)
.contiguous()
)
output = torch.empty_like(input_t)
# https://pytorch.org/docs/stable/distributed.html#torch.distributed.all_to_all_single
# (P, seq_len/P, bs, hc/P, hs) scatter seqlen -all2all-> (P, seq_len/P, bs, hc/P, hs) scatter head
if seq_world_size > 1:
dist.all_to_all_single(output, input_t, group=group)
torch.cuda.synchronize()
else:
output = input_t
# if scattering the seq-dim, transpose the heads back to the original dimension
output = output.reshape(seqlen, bs, shard_hc, hs)
# (seq_len, bs, hc/P, hs) -reshape-> (bs, seq_len, hc/P, hs)
output = output.transpose(0, 1).contiguous().reshape(bs, seqlen, shard_hc, hs)
return output
elif scatter_idx == 1 and gather_idx == 2:
# input (torch.tensor): a tensor sharded along dim 1 (bs, seqlen, hc/P, hs) output: (bs, seqlen/P, hc, hs)
bs, seqlen, shard_hc, hs = input.shape
hc = shard_hc * seq_world_size
shard_seqlen = seqlen // seq_world_size
seq_world_size = dist.get_world_size(group)
# transpose groups of heads with the seq-len parallel dimension, so that we can scatter them!
# (bs, seqlen, hc/P, hs) -reshape-> (bs, P, seq_len/P, hc/P, hs) -transpose(0, 3)-> (hc/P, P, seqlen/P, bs, hs) -transpose(0, 1) -> (P, hc/P, seqlen/P, bs, hs)
input_t = (
input.reshape(bs, seq_world_size, shard_seqlen, shard_hc, hs)
.transpose(0, 3)
.transpose(0, 1)
.contiguous()
.reshape(seq_world_size, shard_hc, shard_seqlen, bs, hs)
)
output = torch.empty_like(input_t)
# https://pytorch.org/docs/stable/distributed.html#torch.distributed.all_to_all_single
# (P, bs x hc/P, seqlen/P, hs) scatter seqlen -all2all-> (P, bs x seq_len/P, hc/P, hs) scatter head
if seq_world_size > 1:
dist.all_to_all_single(output, input_t, group=group)
torch.cuda.synchronize()
else:
output = input_t
# if scattering the seq-dim, transpose the heads back to the original dimension
output = output.reshape(hc, shard_seqlen, bs, hs)
# (hc, seqlen/N, bs, hs) -tranpose(0,2)-> (bs, seqlen/N, hc, hs)
output = output.transpose(0, 2).contiguous().reshape(bs, shard_seqlen, hc, hs)
return output
else:
raise RuntimeError("scatter_idx must be 1 or 2 and gather_idx must be 1 or 2")
class SeqAllToAll4D(torch.autograd.Function):
@staticmethod
def forward(
ctx: Any,
group: dist.ProcessGroup,
input: Tensor,
scatter_idx: int,
gather_idx: int,
) -> Tensor:
ctx.group = group
ctx.scatter_idx = scatter_idx
ctx.gather_idx = gather_idx
return _all_to_all_4D(input, scatter_idx, gather_idx, group=group)
@staticmethod
def backward(ctx: Any, *grad_output: Tensor) -> Tuple[None, Tensor, None, None]:
return (
None,
SeqAllToAll4D.apply(
ctx.group, *grad_output, ctx.gather_idx, ctx.scatter_idx
),
None,
None,
)
def all_to_all_4D(
input_: torch.Tensor, scatter_dim: int = 2, gather_dim: int = 1,
):
return SeqAllToAll4D.apply(nccl_info.group, input_, scatter_dim, gather_dim)
def _all_to_all(
input_: torch.Tensor,
world_size: int,
group: dist.ProcessGroup,
scatter_dim: int,
gather_dim: int,
):
input_list = [
t.contiguous() for t in torch.tensor_split(input_, world_size, scatter_dim)
]
output_list = [torch.empty_like(input_list[0]) for _ in range(world_size)]
dist.all_to_all(output_list, input_list, group=group)
return torch.cat(output_list, dim=gather_dim).contiguous()
class _AllToAll(torch.autograd.Function):
"""All-to-all communication.
Args:
input_: input matrix
process_group: communication group
scatter_dim: scatter dimension
gather_dim: gather dimension
"""
@staticmethod
def forward(ctx, input_, process_group, scatter_dim, gather_dim):
ctx.process_group = process_group
ctx.scatter_dim = scatter_dim
ctx.gather_dim = gather_dim
ctx.world_size = dist.get_world_size(process_group)
output = _all_to_all(
input_, ctx.world_size, process_group, scatter_dim, gather_dim
)
return output
@staticmethod
def backward(ctx, grad_output):
grad_output = _all_to_all(
grad_output,
ctx.world_size,
ctx.process_group,
ctx.gather_dim,
ctx.scatter_dim,
)
return (
grad_output,
None,
None,
None,
)
def all_to_all(
input_: torch.Tensor, scatter_dim: int = 2, gather_dim: int = 1,
):
return _AllToAll.apply(input_, nccl_info.group, scatter_dim, gather_dim)
class _AllGather(torch.autograd.Function):
"""All-gather communication with autograd support.
Args:
input_: input tensor
dim: dimension along which to concatenate
"""
@staticmethod
def forward(ctx, input_, dim):
ctx.dim = dim
world_size = nccl_info.sp_size
group = nccl_info.group
input_size = list(input_.size())
ctx.input_size = input_size[dim]
tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
input_ = input_.contiguous()
dist.all_gather(tensor_list, input_, group=group)
output = torch.cat(tensor_list, dim=dim)
return output
@staticmethod
def backward(ctx, grad_output):
world_size = nccl_info.sp_size
rank = nccl_info.rank_within_group
dim = ctx.dim
input_size = ctx.input_size
sizes = [input_size] * world_size
grad_input_list = torch.split(grad_output, sizes, dim=dim)
grad_input = grad_input_list[rank]
return grad_input, None
def all_gather(input_: torch.Tensor, dim: int = 1):
"""Performs an all-gather operation on the input tensor along the specified dimension.
Args:
input_ (torch.Tensor): Input tensor of shape [B, H, S, D].
dim (int, optional): Dimension along which to concatenate. Defaults to 1.
Returns:
torch.Tensor: Output tensor after all-gather operation, concatenated along 'dim'.
"""
return _AllGather.apply(input_, dim)
def prepare_sequence_parallel_data(
hidden_states, encoder_hidden_states, attention_mask, encoder_attention_mask
):###not use fastvideo default sp data
return (
hidden_states,
encoder_hidden_states,
attention_mask,
encoder_attention_mask,
)
if nccl_info.sp_size == 1:
return (
hidden_states,
encoder_hidden_states,
attention_mask,
encoder_attention_mask,
)
def prepare(
hidden_states, encoder_hidden_states, attention_mask, encoder_attention_mask
):
hidden_states = all_to_all(hidden_states, scatter_dim=2, gather_dim=0)
encoder_hidden_states = all_to_all(
encoder_hidden_states, scatter_dim=1, gather_dim=0
)
attention_mask = all_to_all(attention_mask, scatter_dim=1, gather_dim=0)
encoder_attention_mask = all_to_all(
encoder_attention_mask, scatter_dim=1, gather_dim=0
)
return (
hidden_states,
encoder_hidden_states,
attention_mask,
encoder_attention_mask,
)
sp_size = nccl_info.sp_size
# frame = hidden_states.shape[2]
# print(2333333,frame)#13
# assert frame % sp_size == 0, "frame should be a multiple of sp_size"
(
hidden_states,
encoder_hidden_states,
attention_mask,
encoder_attention_mask,
) = prepare(
hidden_states,
encoder_hidden_states.repeat(1, sp_size, 1),
attention_mask.repeat(1, sp_size, 1, 1),
encoder_attention_mask.repeat(1, sp_size),
)
return hidden_states, encoder_hidden_states, attention_mask, encoder_attention_mask
def sp_parallel_dataloader_wrapper(
dataloader, device, train_batch_size, sp_size, train_sp_batch_size
):
while True:
for data_item in dataloader:
latents, cond, attn_mask, cond_mask = data_item
latents = latents.to(device)
cond = cond.to(device)
attn_mask = attn_mask.to(device)
cond_mask = cond_mask.to(device)
frame = latents.shape[2]
if frame == 1:
yield latents, cond, attn_mask, cond_mask
else:
latents, cond, attn_mask, cond_mask = prepare_sequence_parallel_data(
latents, cond, attn_mask, cond_mask
)
assert (
train_batch_size * sp_size >= train_sp_batch_size
), "train_batch_size * sp_size should be greater than train_sp_batch_size"
for iter in range(train_batch_size * sp_size // train_sp_batch_size):
st_idx = iter * train_sp_batch_size
ed_idx = (iter + 1) * train_sp_batch_size
encoder_hidden_states = cond[st_idx:ed_idx]
attention_mask = attn_mask[st_idx:ed_idx]
encoder_attention_mask = cond_mask[st_idx:ed_idx]
yield (
latents[st_idx:ed_idx],
encoder_hidden_states,
attention_mask,
encoder_attention_mask,
)
def _split_sequence_func(input_, pg: dist.ProcessGroup, dim: int, pad: int):
# skip if only one rank involved
world_size = dist.get_world_size(pg)
rank = dist.get_rank(pg)
if world_size == 1:
return input_
if pad > 0:
pad_size = list(input_.shape)
pad_size[dim] = pad
input_ = torch.cat([input_, torch.zeros(pad_size, dtype=input_.dtype, device=input_.device)], dim=dim)
dim_size = input_.size(dim)
assert dim_size % world_size == 0, f"dim_size ({dim_size}) is not divisible by world_size ({world_size})"
tensor_list = torch.split(input_, dim_size // world_size, dim=dim)
output = tensor_list[rank].contiguous()
# if output.grad!=None:####must be None...
# print(1111111,output.grad)
return output
def _gather_sequence_func(input_, pg: dist.ProcessGroup, dim: int, pad: int):
# skip if only one rank involved
input_ = input_.contiguous()
world_size = dist.get_world_size(pg)
dist.get_rank(pg)
if world_size == 1:
return input_
# all gather
tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
assert input_.device.type == "cuda"
torch.distributed.all_gather(tensor_list, input_, group=pg)
# concat
output = torch.cat(tensor_list, dim=dim)
if pad > 0:
output = output.narrow(dim, 0, output.size(dim) - pad)
return output
class _GatherForwardSplitBackward(torch.autograd.Function):
"""
Gather the input sequence.
Args:
input_: input matrix.
process_group: process group.
dim: dimension
"""
@staticmethod
def symbolic(graph, input_):
return _gather_sequence_func(input_)
@staticmethod
def forward(ctx, input_, process_group, dim, grad_scale, pad):
ctx.process_group = process_group
ctx.dim = dim
ctx.grad_scale = grad_scale
ctx.pad = pad
return _gather_sequence_func(input_, process_group, dim, pad)
@staticmethod
def backward(ctx, grad_output):
if ctx.grad_scale == "up":
grad_output = grad_output * dist.get_world_size(ctx.process_group)
elif ctx.grad_scale == "down":
grad_output = grad_output / dist.get_world_size(ctx.process_group)
return _split_sequence_func(grad_output, ctx.process_group, ctx.dim, ctx.pad), None, None, None, None
class _SplitForwardGatherBackward(torch.autograd.Function):
"""
Split sequence.
Args:
input_: input matrix.
process_group: parallel mode.
dim: dimension
"""
@staticmethod
def symbolic(graph, input_):
return _split_sequence_func(input_)
@staticmethod
def forward(ctx, input_, process_group, dim, grad_scale, pad):
ctx.process_group = process_group
ctx.dim = dim
ctx.grad_scale = grad_scale
ctx.pad = pad
return _split_sequence_func(input_, process_group, dim, pad)
@staticmethod
def backward(ctx, grad_output):
if ctx.grad_scale == "up":
grad_output = grad_output * dist.get_world_size(ctx.process_group)
elif ctx.grad_scale == "down":
grad_output = grad_output / dist.get_world_size(ctx.process_group)
return _gather_sequence_func(grad_output, ctx.process_group, ctx.dim, ctx.pad), None, None, None, None
# def split_sequence(input_, process_group, dim, grad_scale=1.0, pad=0):
# return _SplitForwardGatherBackward.apply(input_, process_group, dim, grad_scale, pad)
# def gather_sequence(input_, process_group, dim, grad_scale=1.0, pad=0):
# return _GatherForwardSplitBackward.apply(input_, process_group, dim, grad_scale, pad)
# if_print=0
def split_sequence(input_, dim, grad_scale=1.0, pad=0):
# global if_print
# if if_print==0:
# # print(123232323, int(os.getenv("RANK", "0")), nccl_info.group)
# print(123232323, int(os.getenv("RANK", "0")), dist.get_rank(nccl_info.group),dist.get_world_size(nccl_info.group))
# if_print=1
process_group=nccl_info.group
return _SplitForwardGatherBackward.apply(input_, process_group, dim, grad_scale, pad)
def gather_sequence(input_, dim, grad_scale=1.0, pad=0):
process_group=nccl_info.group
# print(process_group)
return _GatherForwardSplitBackward.apply(input_, process_group, dim, grad_scale, pad)
import torch
import torch.distributed as dist
import torch.nn.functional as F
from einops import rearrange
from torch import Tensor
from torch.distributed import ProcessGroup
def _all_to_all_func(input_, world_size, group, scatter_dim, gather_dim):
input_list = [t.contiguous() for t in torch.tensor_split(input_, world_size, scatter_dim)]
output_list = [torch.empty_like(input_list[0]) for _ in range(world_size)]
dist.all_to_all(output_list, input_list, group=group)
return torch.cat(output_list, dim=gather_dim).contiguous()
class _AllToAll1(torch.autograd.Function):
"""All-to-all communication.
Args:
input_: input matrix
process_group: communication group
scatter_dim: scatter dimension
gather_dim: gather dimension
"""
@staticmethod
def forward(ctx, input_, process_group, scatter_dim, gather_dim):
ctx.process_group = process_group
ctx.scatter_dim = scatter_dim
ctx.gather_dim = gather_dim
world_size = dist.get_world_size(process_group)
return _all_to_all_func(input_, world_size, process_group, scatter_dim, gather_dim)
@staticmethod
def backward(ctx, *grad_output):
process_group = ctx.process_group
scatter_dim = ctx.gather_dim
gather_dim = ctx.scatter_dim
return_grad = _AllToAll1.apply(*grad_output, process_group, scatter_dim, gather_dim)
return (return_grad, None, None, None)
# def all_to_all_comm(input_, process_group=None, scatter_dim=2, gather_dim=1):
# return _AllToAll1.apply(input_, process_group, scatter_dim, gather_dim)
def all_to_all_comm(input_,scatter_dim=2, gather_dim=1):
process_group=nccl_info.group
return _AllToAll1.apply(input_, process_group, scatter_dim, gather_dim)
|