File size: 17,542 Bytes
e48545f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
import os

# DeepSpeed Team

import torch
import torch.distributed as dist
from fastvideo.utils.parallel_states import nccl_info
from typing import Any, Tuple
from torch import Tensor
from torch.nn import Module


def broadcast(input_: torch.Tensor):
    src = nccl_info.group_id * nccl_info.sp_size
    dist.broadcast(input_, src=src, group=nccl_info.group)


def _all_to_all_4D(
    input: torch.tensor, scatter_idx: int = 2, gather_idx: int = 1, group=None
) -> torch.tensor:
    """
    all-to-all for QKV

    Args:
        input (torch.tensor): a tensor sharded along dim scatter dim
        scatter_idx (int): default 1
        gather_idx (int): default 2
        group : torch process group

    Returns:
        torch.tensor: resharded tensor (bs, seqlen/P, hc, hs)
    """
    assert (
        input.dim() == 4
    ), f"input must be 4D tensor, got {input.dim()} and shape {input.shape}"

    seq_world_size = dist.get_world_size(group)

    if scatter_idx == 2 and gather_idx == 1:
        # input (torch.tensor): a tensor sharded along dim 1 (bs, seqlen/P, hc, hs) output: (bs, seqlen, hc/P, hs)
        bs, shard_seqlen, hc, hs = input.shape
        seqlen = shard_seqlen * seq_world_size
        shard_hc = hc // seq_world_size

        # transpose groups of heads with the seq-len parallel dimension, so that we can scatter them!
        # (bs, seqlen/P, hc, hs) -reshape-> (bs, seq_len/P, P, hc/P, hs) -transpose(0,2)-> (P, seq_len/P, bs, hc/P, hs)
        input_t = (
            input.reshape(bs, shard_seqlen, seq_world_size, shard_hc, hs)
            .transpose(0, 2)
            .contiguous()
        )

        output = torch.empty_like(input_t)
        # https://pytorch.org/docs/stable/distributed.html#torch.distributed.all_to_all_single
        # (P, seq_len/P, bs, hc/P, hs) scatter seqlen -all2all-> (P, seq_len/P, bs, hc/P, hs) scatter head
        if seq_world_size > 1:
            dist.all_to_all_single(output, input_t, group=group)
            torch.cuda.synchronize()
        else:
            output = input_t
        # if scattering the seq-dim, transpose the heads back to the original dimension
        output = output.reshape(seqlen, bs, shard_hc, hs)

        # (seq_len, bs, hc/P, hs) -reshape-> (bs, seq_len, hc/P, hs)
        output = output.transpose(0, 1).contiguous().reshape(bs, seqlen, shard_hc, hs)

        return output

    elif scatter_idx == 1 and gather_idx == 2:
        # input (torch.tensor): a tensor sharded along dim 1 (bs, seqlen, hc/P, hs) output: (bs, seqlen/P, hc, hs)
        bs, seqlen, shard_hc, hs = input.shape
        hc = shard_hc * seq_world_size
        shard_seqlen = seqlen // seq_world_size
        seq_world_size = dist.get_world_size(group)

        # transpose groups of heads with the seq-len parallel dimension, so that we can scatter them!
        # (bs, seqlen, hc/P, hs) -reshape-> (bs, P, seq_len/P, hc/P, hs) -transpose(0, 3)-> (hc/P, P, seqlen/P, bs, hs) -transpose(0, 1) -> (P, hc/P, seqlen/P, bs, hs)
        input_t = (
            input.reshape(bs, seq_world_size, shard_seqlen, shard_hc, hs)
            .transpose(0, 3)
            .transpose(0, 1)
            .contiguous()
            .reshape(seq_world_size, shard_hc, shard_seqlen, bs, hs)
        )

        output = torch.empty_like(input_t)
        # https://pytorch.org/docs/stable/distributed.html#torch.distributed.all_to_all_single
        # (P, bs x hc/P, seqlen/P, hs) scatter seqlen -all2all-> (P, bs x seq_len/P, hc/P, hs) scatter head
        if seq_world_size > 1:
            dist.all_to_all_single(output, input_t, group=group)
            torch.cuda.synchronize()
        else:
            output = input_t

        # if scattering the seq-dim, transpose the heads back to the original dimension
        output = output.reshape(hc, shard_seqlen, bs, hs)

        # (hc, seqlen/N, bs, hs) -tranpose(0,2)-> (bs, seqlen/N, hc, hs)
        output = output.transpose(0, 2).contiguous().reshape(bs, shard_seqlen, hc, hs)

        return output
    else:
        raise RuntimeError("scatter_idx must be 1 or 2 and gather_idx must be 1 or 2")


class SeqAllToAll4D(torch.autograd.Function):
    @staticmethod
    def forward(
        ctx: Any,
        group: dist.ProcessGroup,
        input: Tensor,
        scatter_idx: int,
        gather_idx: int,
    ) -> Tensor:
        ctx.group = group
        ctx.scatter_idx = scatter_idx
        ctx.gather_idx = gather_idx

        return _all_to_all_4D(input, scatter_idx, gather_idx, group=group)

    @staticmethod
    def backward(ctx: Any, *grad_output: Tensor) -> Tuple[None, Tensor, None, None]:
        return (
            None,
            SeqAllToAll4D.apply(
                ctx.group, *grad_output, ctx.gather_idx, ctx.scatter_idx
            ),
            None,
            None,
        )


def all_to_all_4D(
    input_: torch.Tensor, scatter_dim: int = 2, gather_dim: int = 1,
):
    return SeqAllToAll4D.apply(nccl_info.group, input_, scatter_dim, gather_dim)


def _all_to_all(
    input_: torch.Tensor,
    world_size: int,
    group: dist.ProcessGroup,
    scatter_dim: int,
    gather_dim: int,
):
    input_list = [
        t.contiguous() for t in torch.tensor_split(input_, world_size, scatter_dim)
    ]
    output_list = [torch.empty_like(input_list[0]) for _ in range(world_size)]
    dist.all_to_all(output_list, input_list, group=group)
    return torch.cat(output_list, dim=gather_dim).contiguous()


class _AllToAll(torch.autograd.Function):
    """All-to-all communication.

    Args:
        input_: input matrix
        process_group: communication group
        scatter_dim: scatter dimension
        gather_dim: gather dimension
    """

    @staticmethod
    def forward(ctx, input_, process_group, scatter_dim, gather_dim):
        ctx.process_group = process_group
        ctx.scatter_dim = scatter_dim
        ctx.gather_dim = gather_dim
        ctx.world_size = dist.get_world_size(process_group)
        output = _all_to_all(
            input_, ctx.world_size, process_group, scatter_dim, gather_dim
        )
        return output

    @staticmethod
    def backward(ctx, grad_output):
        grad_output = _all_to_all(
            grad_output,
            ctx.world_size,
            ctx.process_group,
            ctx.gather_dim,
            ctx.scatter_dim,
        )
        return (
            grad_output,
            None,
            None,
            None,
        )


def all_to_all(
    input_: torch.Tensor, scatter_dim: int = 2, gather_dim: int = 1,
):
    return _AllToAll.apply(input_, nccl_info.group, scatter_dim, gather_dim)


class _AllGather(torch.autograd.Function):
    """All-gather communication with autograd support.

    Args:
        input_: input tensor
        dim: dimension along which to concatenate
    """

    @staticmethod
    def forward(ctx, input_, dim):
        ctx.dim = dim
        world_size = nccl_info.sp_size
        group = nccl_info.group
        input_size = list(input_.size())

        ctx.input_size = input_size[dim]

        tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
        input_ = input_.contiguous()
        dist.all_gather(tensor_list, input_, group=group)

        output = torch.cat(tensor_list, dim=dim)
        return output

    @staticmethod
    def backward(ctx, grad_output):
        world_size = nccl_info.sp_size
        rank = nccl_info.rank_within_group
        dim = ctx.dim
        input_size = ctx.input_size

        sizes = [input_size] * world_size

        grad_input_list = torch.split(grad_output, sizes, dim=dim)
        grad_input = grad_input_list[rank]

        return grad_input, None


def all_gather(input_: torch.Tensor, dim: int = 1):
    """Performs an all-gather operation on the input tensor along the specified dimension.

    Args:
        input_ (torch.Tensor): Input tensor of shape [B, H, S, D].
        dim (int, optional): Dimension along which to concatenate. Defaults to 1.

    Returns:
        torch.Tensor: Output tensor after all-gather operation, concatenated along 'dim'.
    """
    return _AllGather.apply(input_, dim)


def prepare_sequence_parallel_data(
    hidden_states, encoder_hidden_states, attention_mask, encoder_attention_mask
):###not use fastvideo default sp data
    return (
        hidden_states,
        encoder_hidden_states,
        attention_mask,
        encoder_attention_mask,
    )
    if nccl_info.sp_size == 1:
        return (
            hidden_states,
            encoder_hidden_states,
            attention_mask,
            encoder_attention_mask,
        )

    def prepare(
        hidden_states, encoder_hidden_states, attention_mask, encoder_attention_mask
    ):
        hidden_states = all_to_all(hidden_states, scatter_dim=2, gather_dim=0)
        encoder_hidden_states = all_to_all(
            encoder_hidden_states, scatter_dim=1, gather_dim=0
        )
        attention_mask = all_to_all(attention_mask, scatter_dim=1, gather_dim=0)
        encoder_attention_mask = all_to_all(
            encoder_attention_mask, scatter_dim=1, gather_dim=0
        )
        return (
            hidden_states,
            encoder_hidden_states,
            attention_mask,
            encoder_attention_mask,
        )

    sp_size = nccl_info.sp_size
    # frame = hidden_states.shape[2]
    # print(2333333,frame)#13
    # assert frame % sp_size == 0, "frame should be a multiple of sp_size"

    (
        hidden_states,
        encoder_hidden_states,
        attention_mask,
        encoder_attention_mask,
    ) = prepare(
        hidden_states,
        encoder_hidden_states.repeat(1, sp_size, 1),
        attention_mask.repeat(1, sp_size, 1, 1),
        encoder_attention_mask.repeat(1, sp_size),
    )

    return hidden_states, encoder_hidden_states, attention_mask, encoder_attention_mask


def sp_parallel_dataloader_wrapper(
    dataloader, device, train_batch_size, sp_size, train_sp_batch_size
):
    while True:
        for data_item in dataloader:
            latents, cond, attn_mask, cond_mask = data_item
            latents = latents.to(device)
            cond = cond.to(device)
            attn_mask = attn_mask.to(device)
            cond_mask = cond_mask.to(device)
            frame = latents.shape[2]
            if frame == 1:
                yield latents, cond, attn_mask, cond_mask
            else:
                latents, cond, attn_mask, cond_mask = prepare_sequence_parallel_data(
                    latents, cond, attn_mask, cond_mask
                )
                assert (
                    train_batch_size * sp_size >= train_sp_batch_size
                ), "train_batch_size * sp_size should be greater than train_sp_batch_size"
                for iter in range(train_batch_size * sp_size // train_sp_batch_size):
                    st_idx = iter * train_sp_batch_size
                    ed_idx = (iter + 1) * train_sp_batch_size
                    encoder_hidden_states = cond[st_idx:ed_idx]
                    attention_mask = attn_mask[st_idx:ed_idx]
                    encoder_attention_mask = cond_mask[st_idx:ed_idx]
                    yield (
                        latents[st_idx:ed_idx],
                        encoder_hidden_states,
                        attention_mask,
                        encoder_attention_mask,
                    )



def _split_sequence_func(input_, pg: dist.ProcessGroup, dim: int, pad: int):
    # skip if only one rank involved
    world_size = dist.get_world_size(pg)
    rank = dist.get_rank(pg)
    if world_size == 1:
        return input_

    if pad > 0:
        pad_size = list(input_.shape)
        pad_size[dim] = pad
        input_ = torch.cat([input_, torch.zeros(pad_size, dtype=input_.dtype, device=input_.device)], dim=dim)

    dim_size = input_.size(dim)
    assert dim_size % world_size == 0, f"dim_size ({dim_size}) is not divisible by world_size ({world_size})"

    tensor_list = torch.split(input_, dim_size // world_size, dim=dim)
    output = tensor_list[rank].contiguous()
    # if output.grad!=None:####must be None...
    #     print(1111111,output.grad)
    return output


def _gather_sequence_func(input_, pg: dist.ProcessGroup, dim: int, pad: int):
    # skip if only one rank involved
    input_ = input_.contiguous()
    world_size = dist.get_world_size(pg)
    dist.get_rank(pg)

    if world_size == 1:
        return input_

    # all gather
    tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
    assert input_.device.type == "cuda"
    torch.distributed.all_gather(tensor_list, input_, group=pg)

    # concat
    output = torch.cat(tensor_list, dim=dim)

    if pad > 0:
        output = output.narrow(dim, 0, output.size(dim) - pad)

    return output


class _GatherForwardSplitBackward(torch.autograd.Function):
    """
    Gather the input sequence.

    Args:
        input_: input matrix.
        process_group: process group.
        dim: dimension
    """

    @staticmethod
    def symbolic(graph, input_):
        return _gather_sequence_func(input_)

    @staticmethod
    def forward(ctx, input_, process_group, dim, grad_scale, pad):
        ctx.process_group = process_group
        ctx.dim = dim
        ctx.grad_scale = grad_scale
        ctx.pad = pad
        return _gather_sequence_func(input_, process_group, dim, pad)

    @staticmethod
    def backward(ctx, grad_output):
        if ctx.grad_scale == "up":
            grad_output = grad_output * dist.get_world_size(ctx.process_group)
        elif ctx.grad_scale == "down":
            grad_output = grad_output / dist.get_world_size(ctx.process_group)

        return _split_sequence_func(grad_output, ctx.process_group, ctx.dim, ctx.pad), None, None, None, None



class _SplitForwardGatherBackward(torch.autograd.Function):
    """
    Split sequence.

    Args:
        input_: input matrix.
        process_group: parallel mode.
        dim: dimension
    """

    @staticmethod
    def symbolic(graph, input_):
        return _split_sequence_func(input_)

    @staticmethod
    def forward(ctx, input_, process_group, dim, grad_scale, pad):
        ctx.process_group = process_group
        ctx.dim = dim
        ctx.grad_scale = grad_scale
        ctx.pad = pad
        return _split_sequence_func(input_, process_group, dim, pad)

    @staticmethod
    def backward(ctx, grad_output):
        if ctx.grad_scale == "up":
            grad_output = grad_output * dist.get_world_size(ctx.process_group)
        elif ctx.grad_scale == "down":
            grad_output = grad_output / dist.get_world_size(ctx.process_group)
        return _gather_sequence_func(grad_output, ctx.process_group, ctx.dim, ctx.pad), None, None, None, None


# def split_sequence(input_, process_group, dim, grad_scale=1.0, pad=0):
#     return _SplitForwardGatherBackward.apply(input_, process_group, dim, grad_scale, pad)
# def gather_sequence(input_, process_group, dim, grad_scale=1.0, pad=0):
#     return _GatherForwardSplitBackward.apply(input_, process_group, dim, grad_scale, pad)

# if_print=0
def split_sequence(input_, dim, grad_scale=1.0, pad=0):
    # global if_print
    # if if_print==0:
    #     # print(123232323, int(os.getenv("RANK", "0")), nccl_info.group)
    #     print(123232323, int(os.getenv("RANK", "0")), dist.get_rank(nccl_info.group),dist.get_world_size(nccl_info.group))
    #     if_print=1
    process_group=nccl_info.group
    return _SplitForwardGatherBackward.apply(input_, process_group, dim, grad_scale, pad)
def gather_sequence(input_, dim, grad_scale=1.0, pad=0):
    process_group=nccl_info.group
    # print(process_group)
    return _GatherForwardSplitBackward.apply(input_, process_group, dim, grad_scale, pad)

import torch
import torch.distributed as dist
import torch.nn.functional as F
from einops import rearrange
from torch import Tensor
from torch.distributed import ProcessGroup

def _all_to_all_func(input_, world_size, group, scatter_dim, gather_dim):
    input_list = [t.contiguous() for t in torch.tensor_split(input_, world_size, scatter_dim)]
    output_list = [torch.empty_like(input_list[0]) for _ in range(world_size)]
    dist.all_to_all(output_list, input_list, group=group)
    return torch.cat(output_list, dim=gather_dim).contiguous()


class _AllToAll1(torch.autograd.Function):
    """All-to-all communication.

    Args:
        input_: input matrix
        process_group: communication group
        scatter_dim: scatter dimension
        gather_dim: gather dimension
    """

    @staticmethod
    def forward(ctx, input_, process_group, scatter_dim, gather_dim):
        ctx.process_group = process_group
        ctx.scatter_dim = scatter_dim
        ctx.gather_dim = gather_dim
        world_size = dist.get_world_size(process_group)

        return _all_to_all_func(input_, world_size, process_group, scatter_dim, gather_dim)

    @staticmethod
    def backward(ctx, *grad_output):
        process_group = ctx.process_group
        scatter_dim = ctx.gather_dim
        gather_dim = ctx.scatter_dim
        return_grad = _AllToAll1.apply(*grad_output, process_group, scatter_dim, gather_dim)
        return (return_grad, None, None, None)


# def all_to_all_comm(input_, process_group=None, scatter_dim=2, gather_dim=1):
#     return _AllToAll1.apply(input_, process_group, scatter_dim, gather_dim)
def all_to_all_comm(input_,scatter_dim=2, gather_dim=1):
    process_group=nccl_info.group
    return _AllToAll1.apply(input_, process_group, scatter_dim, gather_dim)