Spaces:
Running
on
Zero
Running
on
Zero
''' | |
nohup python preprocess/extract-clip.py 0 2 >> clip.log 2>&1 & | |
nohup python preprocess/extract-clip.py 1 2 >> clip.log 2>&1 & | |
0/1: What part does this process do | |
2: It consists of two parts in total. | |
''' | |
root_mp4s="test_data/mp4root" | |
h,w=480,832 | |
opt_root="output_root/clip" | |
checkpoint_dir="/DATA/bvac/personal/wan21/Wan2.1-I2V-14B-720P" | |
import os,sys,traceback | |
import pdb | |
all=int(sys.argv[2]) | |
i_part=int(sys.argv[1]) | |
# os.environ["CUDA_VISIBLE_DEVICES"]=str(int(sys.argv[1])%4) | |
os.environ["CUDA_VISIBLE_DEVICES"]=sys.argv[1] | |
import pdb,torch | |
from wan.modules.clip import CLIPModel | |
device="cuda" | |
clip = CLIPModel( | |
dtype=torch.float16, | |
device=device, | |
checkpoint_path=os.path.join(checkpoint_dir,'models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth'), | |
tokenizer_path=os.path.join(checkpoint_dir, 'xlm-roberta-large')) | |
clip.model = clip.model.to(device) | |
from decord import VideoReader | |
import torchvision.transforms.functional as TF | |
def read_img(path): | |
vr = VideoReader(uri=path, height=-1, width=-1) | |
temp_frms = vr.get_batch([2]) | |
return (TF.to_tensor(temp_frms.asnumpy().astype("float32")[0])/255).sub_(0.5).div_(0.5).to(device) | |
os.makedirs(opt_root,exist_ok=True) | |
def go(todos): | |
for path in todos: | |
try: | |
name=os.path.basename(path).replace(".mp4",".pt") | |
if os.path.exists("%s/%s"%(opt_root,name)):continue | |
img = read_img(path) | |
clip_context = clip.visual([img[:, None, :, :]]) | |
save_path="%s/%s"%(opt_root,name) | |
torch.save(clip_context, save_path) | |
except: | |
print(path,traceback.format_exc()) | |
todo=[] | |
for name in os.listdir(root_mp4s): | |
todo.append("%s/%s"%(root_mp4s,name)) | |
todo=sorted(todo) | |
todo=todo[i_part::all] | |
go(todo) | |