AnisoraV3 / wan /image2video_mdinfer_oss_tea.py
nyarunyarunya's picture
Upload folder using huggingface_hub
4f7b5ea verified
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import sys,os
sys.path.append('../OSS')
from OSS.OSS import search_OSS_video, infer_OSS
from OSS.model_wrap import _WrappedModel_Wan
import gc
import logging
import math
import os
import pdb
import random
import sys
import types
from contextlib import contextmanager
from functools import partial
import numpy as np
import torch
import torch.cuda.amp as amp
import torch.distributed as dist
import torchvision.transforms.functional as TF
from tqdm import tqdm
from .distributed.fsdp import shard_model
from .modules.clip import CLIPModel
from .modules.model_infer import WanModel
from .modules.t5 import T5EncoderModel
from .modules.vae import WanVAE
# from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler,get_sampling_sigmas, retrieve_timesteps)
from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler)
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
from diffusers import FlowMatchEulerDiscreteScheduler
import inspect
import math
from typing import Callable, Dict, List, Optional, Tuple, Union
import torch
import numpy as np
import random
def set_seed(seed):
if seed == -1:
seed = random.randint(0, 1000000)
seed = int(seed)
random.seed(seed)
os.environ["PYTHONHASHSEED"] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
class FlowMatchScheduler():
def __init__(self, num_inference_steps=100, num_train_timesteps=1000, shift=3.0, sigma_max=1.0, sigma_min=0.003 / 1.002, inverse_timesteps=False, extra_one_step=False, reverse_sigmas=False):
self.num_train_timesteps = num_train_timesteps
self.shift = shift
self.sigma_max = sigma_max
self.sigma_min = sigma_min
self.inverse_timesteps = inverse_timesteps
self.extra_one_step = extra_one_step
self.reverse_sigmas = reverse_sigmas
self.set_timesteps(num_inference_steps)
def set_timesteps(self, num_inference_steps=100, denoising_strength=1.0, training=False, shift=None):
if shift is not None:
self.shift = shift
sigma_start = self.sigma_min + (self.sigma_max - self.sigma_min) * denoising_strength
if self.extra_one_step:
self.sigmas = torch.linspace(sigma_start, self.sigma_min, num_inference_steps + 1)[:-1]
else:
self.sigmas = torch.linspace(sigma_start, self.sigma_min, num_inference_steps)
if self.inverse_timesteps:
self.sigmas = torch.flip(self.sigmas, dims=[0])
self.sigmas = self.shift * self.sigmas / (1 + (self.shift - 1) * self.sigmas)
if self.reverse_sigmas:
self.sigmas = 1 - self.sigmas
self.timesteps = self.sigmas * self.num_train_timesteps
if training:
x = self.timesteps
y = torch.exp(-2 * ((x - num_inference_steps / 2) / num_inference_steps) ** 2)
y_shifted = y - y.min()
bsmntw_weighing = y_shifted * (num_inference_steps / y_shifted.sum())
self.linear_timesteps_weights = bsmntw_weighing
def step(self, model_output, timestep, sample, to_final=False):
if isinstance(timestep, torch.Tensor):
timestep = timestep.cpu()
timestep_id = torch.argmin((self.timesteps - timestep).abs())
sigma = self.sigmas[timestep_id]
if to_final or timestep_id + 1 >= len(self.timesteps):
sigma_ = 1 if (self.inverse_timesteps or self.reverse_sigmas) else 0
else:
sigma_ = self.sigmas[timestep_id + 1]
prev_sample = sample + model_output * (sigma_ - sigma)
return prev_sample
def return_to_timestep(self, timestep, sample, sample_stablized):
if isinstance(timestep, torch.Tensor):
timestep = timestep.cpu()
timestep_id = torch.argmin((self.timesteps - timestep).abs())
sigma = self.sigmas[timestep_id]
model_output = (sample - sample_stablized) / sigma
return model_output
def add_noise(self, original_samples, noise, timestep):
if isinstance(timestep, torch.Tensor):
timestep = timestep.cpu()
timestep_id = torch.argmin((self.timesteps - timestep).abs())
sigma = self.sigmas[timestep_id]
sample = (1 - sigma) * original_samples + sigma * noise
return sample
def training_target(self, sample, noise, timestep):
target = noise - sample
return target
def training_weight(self, timestep):
timestep_id = torch.argmin((self.timesteps - timestep.to(self.timesteps.device)).abs())
weights = self.linear_timesteps_weights[timestep_id]
return weights
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
sigmas: Optional[List[float]] = None,
**kwargs,
):
r"""
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
Args:
scheduler (`SchedulerMixin`):
The scheduler to get timesteps from.
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
must be `None`.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
timesteps (`List[int]`, *optional*):
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
`num_inference_steps` and `sigmas` must be `None`.
sigmas (`List[float]`, *optional*):
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
`num_inference_steps` and `timesteps` must be `None`.
Returns:
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
second element is the number of inference steps.
"""
if timesteps is not None and sigmas is not None:
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
if timesteps is not None:
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accepts_timesteps:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" timestep schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
elif sigmas is not None:
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accept_sigmas:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" sigmas schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
class WanI2V:
def __init__(
self,
config,
checkpoint_dir,
device_id=0,
rank=0,
t5_fsdp=False,
dit_fsdp=False,
use_usp=False,
t5_cpu=False,
init_on_cpu=True,
):
r"""
Initializes the image-to-video generation model components.
Args:
config (EasyDict):
Object containing model parameters initialized from config.py
checkpoint_dir (`str`):
Path to directory containing model checkpoints
device_id (`int`, *optional*, defaults to 0):
Id of target GPU device
rank (`int`, *optional*, defaults to 0):
Process rank for distributed training
t5_fsdp (`bool`, *optional*, defaults to False):
Enable FSDP sharding for T5 model
dit_fsdp (`bool`, *optional*, defaults to False):
Enable FSDP sharding for DiT model
use_usp (`bool`, *optional*, defaults to False):
Enable distribution strategy of USP.
t5_cpu (`bool`, *optional*, defaults to False):
Whether to place T5 model on CPU. Only works without t5_fsdp.
init_on_cpu (`bool`, *optional*, defaults to True):
Enable initializing Transformer Model on CPU. Only works without FSDP or USP.
"""
self.device = torch.device(f"cuda:{device_id}")
self.config = config
self.rank = rank
self.use_usp = use_usp
self.t5_cpu = t5_cpu
self.scheduler =FlowMatchScheduler(shift=5, sigma_min=0.0, extra_one_step=True)
# self.scheduler =FlowMatchScheduler(shift=17, sigma_min=0.0, extra_one_step=True)
self.num_train_timesteps = config.num_train_timesteps
self.param_dtype = config.param_dtype
shard_fn = partial(shard_model, device_id=device_id)
self.text_encoder = T5EncoderModel(
text_len=config.text_len,
dtype=config.t5_dtype,
device=torch.device('cpu'),
checkpoint_path=os.path.join(checkpoint_dir, config.t5_checkpoint),
tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer),
shard_fn=shard_fn if t5_fsdp else None,
)
self.vae_stride = config.vae_stride
self.patch_size = config.patch_size
self.vae = WanVAE(
vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint),
device=self.device)
self.clip = CLIPModel(
dtype=config.clip_dtype,
device=self.device,
checkpoint_path=os.path.join(checkpoint_dir,config.clip_checkpoint),
tokenizer_path=os.path.join(checkpoint_dir, config.clip_tokenizer))
logging.info(f"Creating WanModel from {checkpoint_dir}")
self.model = WanModel.from_pretrained(checkpoint_dir)
self.model.eval().requires_grad_(False)
if t5_fsdp or dit_fsdp or use_usp:
init_on_cpu = False
if use_usp:
from xfuser.core.distributed import \
get_sequence_parallel_world_size
from .distributed.xdit_context_parallel import (usp_attn_forward,usp_dit_forward)
for block in self.model.blocks:
block.self_attn.forward = types.MethodType(
usp_attn_forward, block.self_attn)
self.model.forward = types.MethodType(usp_dit_forward, self.model)
self.sp_size = get_sequence_parallel_world_size()
else:
self.sp_size = 1
if dist.is_initialized():
dist.barrier()
if dit_fsdp:
self.model = shard_fn(self.model)
else:
if not init_on_cpu:
self.model=self.model.to(self.device)
self.sample_neg_prompt = config.sample_neg_prompt
def generate(self,
args,
input_prompt,
img,
max_area=720 * 1280,
frame_num=81,
shift=5.0,
sample_solver='unipc',
sampling_steps=40,
guide_scale=5.0,
n_prompt="",
seed=-1,
offload_model=True,
student_steps=20,
norm=2,
frame_type="all",
channel_type="all",
random_channel=False,
):
r"""
Generates video frames from input image and text prompt using diffusion process.
Args:
input_prompt (`str`):
Text prompt for content generation.
img (PIL.Image.Image):
Input image tensor. Shape: [3, H, W]
max_area (`int`, *optional*, defaults to 720*1280):
Maximum pixel area for latent space calculation. Controls video resolution scaling
frame_num (`int`, *optional*, defaults to 81):
How many frames to sample from a video. The number should be 4n+1
shift (`float`, *optional*, defaults to 5.0):
Noise schedule shift parameter. Affects temporal dynamics
[NOTE]: If you want to generate a 480p video, it is recommended to set the shift value to 3.0.
sample_solver (`str`, *optional*, defaults to 'unipc'):
Solver used to sample the video.
sampling_steps (`int`, *optional*, defaults to 40):
Number of diffusion sampling steps. Higher values improve quality but slow generation
guide_scale (`float`, *optional*, defaults 5.0):
Classifier-free guidance scale. Controls prompt adherence vs. creativity
n_prompt (`str`, *optional*, defaults to ""):
Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt`
seed (`int`, *optional*, defaults to -1):
Random seed for noise generation. If -1, use random seed
offload_model (`bool`, *optional*, defaults to True):
If True, offloads models to CPU during generation to save VRAM
Returns:
torch.Tensor:
Generated video frames tensor. Dimensions: (C, N H, W) where:
- C: Color channels (3 for RGB)
- N: Number of frames (81)
- H: Frame height (from max_area)
- W: Frame width from max_area)
"""
img = TF.to_tensor(img).sub_(0.5).div_(0.5).to(self.device)
F = frame_num
h, w = img.shape[1:]
aspect_ratio = h / w
lat_h = round(
np.sqrt(max_area * aspect_ratio) // self.vae_stride[1] //
self.patch_size[1] * self.patch_size[1])
lat_w = round(
np.sqrt(max_area / aspect_ratio) // self.vae_stride[2] //
self.patch_size[2] * self.patch_size[2])
h = lat_h * self.vae_stride[1]
w = lat_w * self.vae_stride[2]
max_seq_len = ((F - 1) // self.vae_stride[0] + 1) * lat_h * lat_w // (
self.patch_size[1] * self.patch_size[2])
max_seq_len = int(math.ceil(max_seq_len / self.sp_size)) * self.sp_size
seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
if seed >= 0:
set_seed(seed)
seed_g = torch.Generator(device=self.device)
seed_g.manual_seed(seed)
noise = torch.randn(
16,
F//4+1,
lat_h,
lat_w,
dtype=torch.float32,
generator=seed_g,
device=self.device)
msk = torch.ones(1, F, lat_h, lat_w, device=self.device)
msk[:, 1:] = 0
msk = torch.concat([
torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]
],dim=1)
msk = msk.view(1, msk.shape[1] // 4, 4, lat_h, lat_w)
msk = msk.transpose(1, 2)[0]
if n_prompt == "":
n_prompt = self.sample_neg_prompt
# preprocess
if not self.t5_cpu:
self.text_encoder.model=self.text_encoder.model.to(self.device)
context = self.text_encoder([input_prompt], self.device)
context_null = self.text_encoder([n_prompt], self.device)
if offload_model:
self.text_encoder.model=self.text_encoder.model.cpu()
else:
context = self.text_encoder([input_prompt], torch.device('cpu'))
context_null = self.text_encoder([n_prompt], torch.device('cpu'))
context = [t.to(self.device) for t in context]
context_null = [t.to(self.device) for t in context_null]
self.clip.model=self.clip.model.to(self.device)
clip_context = self.clip.visual([img[:, None, :, :]])
if offload_model:
self.clip.model=self.clip.model.cpu()
torch.cuda.empty_cache()
y = self.vae.encode([
torch.concat([
torch.nn.functional.interpolate(
img[None].cpu(), size=(h, w), mode='bicubic').transpose(
0, 1),
torch.zeros(3, F-1, h, w)
],dim=1).to(self.device)
])[0]
y = torch.concat([msk, y])
@contextmanager
def noop_no_sync():
yield
no_sync = getattr(self.model, 'no_sync', noop_no_sync)
# sampling_steps=10
# evaluation mode
with amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync():
device = self.device
num_inference_steps=sampling_steps
self.scheduler.set_timesteps(num_inference_steps, 1.0, shift=5.0)
# sample videos
latents = noise
if offload_model:
torch.cuda.empty_cache()
self.model=self.model.to(self.device)
# arg_c = {
# 'context': [context[0]],
# 'clip_fea': clip_context,
# 'seq_len': max_seq_len,
# 'y': [y],
# }
#
# arg_null = {
# 'context': context_null,
# 'clip_fea': clip_context,
# 'seq_len': max_seq_len,
# 'y': [y],
# }
# pre-process
model = _WrappedModel_Wan(self.model, self.scheduler.timesteps, self.num_train_timesteps, context_null, guide_scale)
model_kwargs = {
'seq_len': max_seq_len,
'y': [y],
'clip_fea': clip_context,
}
B = 1
# latents = latents[0].unsqueeze(0)
latents = latents.unsqueeze(0)
oss_steps = search_OSS_video(model, latents, B, context, self.device, teacher_steps=sampling_steps, student_steps=student_steps, norm=norm, model_kwargs=model_kwargs, frame_type=frame_type, channel_type=channel_type, random_channel=random_channel)
latents_oss = infer_OSS(oss_steps, model, latents, context, self.device, model_kwargs=model_kwargs)
with open("%s.txt"%args.save_file,"w")as f:f.write(str(oss_steps))
os._exit(2333)
# pdb.set_trace()
# teacher video
teacher_steps = list(range(1, sampling_steps+1))
latents_tea = infer_OSS(teacher_steps, model, latents, context, self.device, model_kwargs=model_kwargs)
x0_oss = latents_oss
x0_tea = latents_tea
if offload_model:
self.model.cpu()
torch.cuda.empty_cache()
if self.rank == 0:
videos_oss = self.vae.decode(x0_oss)
videos_tea = self.vae.decode(x0_tea)
# for idx, t in enumerate(tqdm(self.scheduler.timesteps)):
# latent_model_input = [latent.to(self.device)]
# timestep = [t]
#
# timestep = torch.stack(timestep).to(self.device)
# noise_pred_cond = self.model(latent_model_input, t=timestep, **arg_c)[0].to(torch.device('cpu') if offload_model else self.device)
# if offload_model:
# torch.cuda.empty_cache()
# noise_pred_uncond = self.model(latent_model_input, t=timestep, **arg_null)[0].to(torch.device('cpu') if offload_model else self.device)
# if offload_model:
# torch.cuda.empty_cache()
# noise_pred = noise_pred_uncond + guide_scale * (noise_pred_cond - noise_pred_uncond)
# # noise_pred = noise_pred_cond
# latent = latent.to(torch.device('cpu') if offload_model else self.device)
#
# # latents = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents)
# temp_x0 = self.scheduler.step(
# noise_pred.unsqueeze(0),
# self.scheduler.timesteps[idx],
# latent.unsqueeze(0))[0]
# latent = temp_x0.squeeze(0)
#
# x0 = [latent.to(self.device)]
# del latent_model_input, timestep
#
# if offload_model:
# self.model=self.model.cpu()
# torch.cuda.empty_cache()
#
# if self.rank == 0:
# videos = self.vae.decode(x0)
del noise, latents
# del self.scheduler
if offload_model:
gc.collect()
torch.cuda.synchronize()
if dist.is_initialized():
dist.barrier()
return videos[0] if self.rank == 0 else None