Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
from sklearn.preprocessing import LabelEncoder | |
from xgboost import XGBClassifier | |
import pickle | |
model = pickle.load('crop_recommendation_model.pkl') | |
le = pickle.load('label_encoder.pkl') | |
def recommend_crop(nitrogen, phosphorus, potassium, temperature, humidity, ph, rainfall) | |
X_sample = nitrogen, phosphorus, potassium, temperature, humidity, ph, rainfall | |
# Predict crop recommendations | |
y_pred_sample = model.predict(X_sample) | |
# Decode the predictions and ground truth back to crop names | |
crops_pred = le.inverse_transform(y_pred_sample) | |
return crops_pred | |
# Create the Gradio interface | |
interface = gr.Interface( | |
fn=classify_potato_plant, | |
inputs=[gr.Number(label="Nitrogen - Ratio of Nitrogen in the soil"), gr.Number(label="Phosphorus - Ratio of Phosphorus in the soil"), gr.Number(label="Potassium - Ratio of Potassium in the soil"), gr.Number(label="Temperature - In degrees Celsius"), gr.Number(label="Humidity - Relative humidity in %"), gr.Number(label="pH Value - pH value of the soil"), gr.Number(label="Rainfall - Rainfall in mm")], | |
outputs=[gr.Textbox(label="Predicted Output"), gr.Textbox(label="Confidence Score")], | |
title="Acres - PPDC", | |
description="Acres PPDC, is our Potato Plant Disease Classification vision model, capable of accurately classifying potato plant disease, based on a single image." | |
) |