File size: 24,611 Bytes
b6208cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5afbde
 
b6208cf
 
 
 
c5afbde
b6208cf
c5afbde
b6208cf
 
 
 
c5afbde
b6208cf
 
 
c5afbde
b6208cf
 
 
 
 
c5afbde
b6208cf
 
 
 
c5afbde
b6208cf
 
 
 
 
 
c5afbde
b6208cf
 
 
 
 
 
 
 
 
c5afbde
b6208cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5afbde
 
 
 
 
 
 
 
 
b6208cf
c5afbde
b6208cf
 
 
c5afbde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6208cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5afbde
 
b6208cf
 
 
 
c5afbde
b6208cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5afbde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6208cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f776567
 
41dd3b6
b6208cf
 
f776567
fbe765f
 
 
 
f107003
41dd3b6
fbe765f
 
 
 
 
41dd3b6
 
 
b6208cf
 
3d9842c
 
 
 
b6208cf
93fef60
b6208cf
 
 
93fef60
2974d9b
b6208cf
 
 
 
 
f776567
b1c6400
b6208cf
 
 
 
 
9db44a7
9e65b67
 
 
 
 
 
 
2974d9b
9e65b67
ef59a7d
 
 
9e65b67
 
 
ef59a7d
 
 
 
 
 
 
 
b6208cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9db44a7
b6208cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5afbde
b6208cf
 
c5afbde
 
b6208cf
9db44a7
b6208cf
 
 
 
 
c5afbde
b6208cf
 
 
c5afbde
b6208cf
9db44a7
b6208cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
import os
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing.image import img_to_array, array_to_img
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import cv2
import gradio as gr
from PIL import Image
import io
import tempfile
from datetime import datetime

# Global variables
model = None
class_labels = {0: 'no', 1: 'yes'}
IMG_WIDTH, IMG_HEIGHT = 128, 128

# --- MODEL LOADING FUNCTION ---
def load_brain_tumor_model():
    """Load the brain tumor detection model from the file system"""
    global model
    
    # Common model file names to check
    model_paths = [
        'brain_tumor_classifier_v3.h5',
        'model.h5',
        'brain_tumor_model.h5',
        'brain_tumor_classifier.h5'
    ]
    
    for model_path in model_paths:
        if os.path.exists(model_path):
            try:
                model = load_model(model_path)
                print(f"βœ… Model loaded successfully from {model_path}")
                return True
            except Exception as e:
                print(f"❌ Error loading model from {model_path}: {str(e)}")
                continue
    
    print("❌ No valid model file found. Please ensure your model is in the root directory.")
    return False

# Load model on startup
model_loaded = load_brain_tumor_model()

# --- IMAGE PREPROCESSING FUNCTIONS ---
def preprocess_image(image, target_size=(128, 128)):
    """
    Preprocess uploaded image for model prediction
    """
    if image is None:
        return None, "No image provided"
    
    try:
        # Convert to PIL Image if needed
        if not isinstance(image, Image.Image):
            image = Image.fromarray(image)
        
        # Convert to RGB if needed
        if image.mode != 'RGB':
            image = image.convert('RGB')
        
        # Resize image
        image_resized = image.resize(target_size, Image.Resampling.LANCZOS)
        
        # Convert to grayscale for display (optional)
        image_gray = image_resized.convert('L').convert('RGB')
        
        # Convert to array and normalize
        img_array = img_to_array(image_resized) / 255.0
        
        return image_resized, image_gray, img_array, "βœ… Image preprocessed successfully"
    
    except Exception as e:
        return None, None, None, f"❌ Error preprocessing image: {str(e)}"

# --- ENHANCED GRAD-CAM++ FUNCTIONS ---
def make_gradcampp_heatmap(img_array, model, last_conv_layer_name='last_conv_layer', pred_index=None):
    """
    Creates an improved Grad-CAM++ heatmap with better numerical stability.
    """
    if model is None:
        return None
    
    try:
        grad_model = tf.keras.models.Model(
            inputs=model.input,
            outputs=[model.get_layer(last_conv_layer_name).output, model.output]
        )

        with tf.GradientTape(persistent=True) as tape1:
            with tf.GradientTape(persistent=True) as tape2:
                with tf.GradientTape() as tape3:
                    conv_outputs, predictions = grad_model(img_array)
                    if pred_index is None:
                        pred_index = tf.argmax(predictions[0])
                    class_channel = predictions[:, pred_index]

                grads = tape3.gradient(class_channel, conv_outputs)
            first_derivative = tape2.gradient(class_channel, conv_outputs)
        second_derivative = tape1.gradient(first_derivative, conv_outputs)

        del tape1, tape2

        eps = 1e-8
        alpha_num = second_derivative
        alpha_denom = 2.0 * second_derivative + tf.reduce_sum(conv_outputs * grads, axis=[1, 2], keepdims=True)
        alpha_denom = tf.where(tf.abs(alpha_denom) < eps, tf.ones_like(alpha_denom) * eps, alpha_denom)
        alphas = alpha_num / alpha_denom

        weights = tf.reduce_sum(alphas * tf.nn.relu(grads), axis=[1, 2])
        weights = tf.nn.softmax(weights, axis=-1)
        
        weights_reshaped = tf.reshape(weights, (1, 1, 1, -1))
        heatmap = tf.reduce_sum(weights_reshaped * conv_outputs, axis=-1)
        heatmap = tf.squeeze(heatmap, axis=0)

        heatmap = tf.nn.relu(heatmap)
        heatmap_np = heatmap.numpy()
        
        heatmap_min = np.min(heatmap_np)
        heatmap_max = np.max(heatmap_np)
        if heatmap_max > heatmap_min:
            heatmap_np = (heatmap_np - heatmap_min) / (heatmap_max - heatmap_min)
        else:
            heatmap_np = np.zeros_like(heatmap_np)

        return heatmap_np
    
    except Exception as e:
        print(f"Error in Grad-CAM++: {str(e)}")
        return None

def create_heatmap_visualizations(heatmap, img_shape):
    """Create multiple heatmap visualizations with different color schemes"""
    heatmap_resized = cv2.resize(heatmap, (img_shape[1], img_shape[0]), interpolation=cv2.INTER_CUBIC)
    heatmap_smooth = cv2.GaussianBlur(heatmap_resized, (5, 5), 0)
    heatmap_enhanced = cv2.equalizeHist(np.uint8(255 * heatmap_smooth)) / 255.0
    
    visualizations = {
        'jet': {'heatmap': heatmap_smooth, 'colormap': 'jet', 'title': 'Jet Heatmap'},
        'hot': {'heatmap': heatmap_smooth, 'colormap': 'hot', 'title': 'Hot Heatmap'},
        'plasma': {'heatmap': heatmap_enhanced, 'colormap': 'plasma', 'title': 'Plasma Heatmap'},
        'viridis': {'heatmap': heatmap_enhanced, 'colormap': 'viridis', 'title': 'Viridis Heatmap'},
        'inferno': {'heatmap': heatmap_smooth, 'colormap': 'inferno', 'title': 'Inferno Heatmap'},
        'cool': {'heatmap': heatmap_smooth, 'colormap': 'cool', 'title': 'Cool Heatmap'}
    }
    
    return visualizations

def superimpose_gradcam_enhanced(img, heatmap, colormap='jet', alpha=0.4):
    """Enhanced superimposition with different colormaps"""
    if not isinstance(img, np.ndarray):
        img = img_to_array(img)
    if img.max() > 1.0:
        img = img / 255.0

    heatmap_resized = cv2.resize(heatmap, (img.shape[1], img.shape[0]), interpolation=cv2.INTER_CUBIC)
    heatmap_uint8 = np.uint8(255 * heatmap_resized)

    if hasattr(plt, 'colormaps'):
        cmap = plt.colormaps[colormap]
    else:
        cmap = cm.get_cmap(colormap)

    colored_heatmap = cmap(heatmap_uint8)[:, :, :3]
    
    gamma = 2.2
    img_gamma = np.power(img, 1/gamma)
    colored_heatmap_gamma = np.power(colored_heatmap, 1/gamma)
    
    blended_gamma = (colored_heatmap_gamma * alpha) + (img_gamma * (1 - alpha))
    superimposed_img_float = np.power(blended_gamma, gamma)
    superimposed_img_float = np.clip(superimposed_img_float, 0, 1)
    
    return superimposed_img_float

# --- PREDICTION AND VISUALIZATION FUNCTIONS ---
def predict_brain_tumor(image):
    """Make prediction on uploaded image"""
    if not model_loaded or model is None:
        return "❌ Model not available. Please check if the model file exists in the space.", None, None
    
    if image is None:
        return "❌ No image provided.", None, None
    
    try:
        # Preprocess image
        processed_img, gray_img, img_array, preprocess_msg = preprocess_image(image)
        if processed_img is None:
            return preprocess_msg, None, None
        
        # Make prediction
        img_batch = np.expand_dims(img_array, axis=0)
        prediction = model.predict(img_batch, verbose=0)[0][0]
        
        # Interpret results
        predicted_class = int(round(prediction))
        predicted_label = class_labels[predicted_class]
        confidence = prediction if predicted_class == 1 else 1 - prediction
        
        # Create result message
        if predicted_class == 1:
            status_emoji = "⚠️"
            status_text = "**TUMOR DETECTED**"
            status_color = "red"
        else:
            status_emoji = "βœ…"
            status_text = "**NO TUMOR DETECTED**"
            status_color = "green"
        
        result_msg = f"""
        ## 🧠 Brain Tumor Detection Results
        
        **Prediction:** {predicted_label.upper()}  
        **Confidence:** {confidence:.1%}  
        **Raw Score:** {prediction:.4f}  
        
        {status_emoji} {status_text}
        """
        
        return result_msg, processed_img, gray_img
    
    except Exception as e:
        return f"❌ Error during prediction: {str(e)}", None, None

def create_detailed_analysis(image):
    """Create comprehensive Grad-CAM++ analysis"""
    if not model_loaded or model is None or image is None:
        return "❌ Please upload an image for analysis."
    
    try:
        # Preprocess and predict
        processed_img, gray_img, img_array, _ = preprocess_image(image)
        img_batch = np.expand_dims(img_array, axis=0)
        prediction = model.predict(img_batch, verbose=0)[0][0]
        
        predicted_class = int(round(prediction))
        predicted_label = class_labels[predicted_class]
        confidence = prediction if predicted_class == 1 else 1 - prediction
        
        # Generate heatmap
        heatmap = make_gradcampp_heatmap(img_batch, model)
        if heatmap is None:
            return "❌ Error generating heatmap."
        
        # Create visualizations
        visualizations = create_heatmap_visualizations(heatmap, img_array.shape)
        
        # Create comprehensive plot with 4 rows to accommodate all visualizations
        fig = plt.figure(figsize=(20, 16))
        color = 'green' if predicted_class == 0 else 'red'
        fig.suptitle(f'Comprehensive Grad-CAM++ Analysis\nPredicted: {predicted_label.upper()} ({confidence:.2%})',
                     fontsize=16, fontweight='bold', color=color)

        # Row 1: Original image and heatmaps
        # Original image
        plt.subplot(4, 5, 1)
        plt.imshow(processed_img)
        plt.title("Original Image", fontsize=12, fontweight='bold')
        plt.axis('off')

        # Different heatmap visualizations (4 in first row)
        viz_names = ['jet', 'hot', 'plasma', 'viridis']
        for i, viz_name in enumerate(viz_names):
            viz = visualizations[viz_name]
            plt.subplot(4, 5, i + 2)
            im = plt.imshow(viz['heatmap'], cmap=viz['colormap'])
            plt.title(viz['title'], fontsize=12)
            plt.axis('off')
            plt.colorbar(im, fraction=0.046, pad=0.04)

        # Row 2: Remaining heatmaps, attention profile, and statistics
        # More heatmap styles
        viz_names2 = ['inferno', 'cool']
        for i, viz_name in enumerate(viz_names2):
            viz = visualizations[viz_name]
            plt.subplot(4, 5, i + 6)
            im = plt.imshow(viz['heatmap'], cmap=viz['colormap'])
            plt.title(viz['title'], fontsize=12)
            plt.axis('off')
            plt.colorbar(im, fraction=0.046, pad=0.04)

        # Attention profile
        plt.subplot(4, 5, 8)
        attention_profile = np.mean(heatmap, axis=1)
        plt.plot(attention_profile, range(len(attention_profile)), 'b-', linewidth=2)
        plt.title('Vertical Attention Profile', fontsize=12)
        plt.xlabel('Attention Intensity')
        plt.ylabel('Image Height')
        plt.gca().invert_yaxis()
        plt.grid(True, alpha=0.3)

        # Statistics
        plt.subplot(4, 5, 9)
        stats_text = f"""Heatmap Statistics:
Mean: {np.mean(heatmap):.3f}
Std: {np.std(heatmap):.3f}
Max: {np.max(heatmap):.3f}
Min: {np.min(heatmap):.3f}

Prediction:
Confidence: {confidence:.1%}
Raw Score: {prediction:.4f}
Class: {predicted_label}"""
        
        plt.text(0.1, 0.5, stats_text, transform=plt.gca().transAxes, fontsize=10,
                 verticalalignment='center', bbox=dict(boxstyle="round,pad=0.3", facecolor="lightblue"))
        plt.axis('off')

        # Empty space for symmetry
        plt.subplot(4, 5, 10)
        plt.axis('off')

        # Rows 3-4: All 6 superimposed views in 2 rows of 3
        superimposed_colormaps = ['jet', 'hot', 'plasma', 'viridis', 'inferno', 'cool']
        
        # Row 3: First 3 superimposed views (positions 11-13)
        for i, cmap_name in enumerate(superimposed_colormaps[:3]):
            superimposed_img = superimpose_gradcam_enhanced(img_array, heatmap, colormap=cmap_name, alpha=0.4)
            plt.subplot(4, 5, i + 11)
            plt.imshow(superimposed_img)
            plt.title(f'Superimposed ({cmap_name.title()})', fontsize=12)
            plt.axis('off')
        
        # Empty spaces in row 3
        plt.subplot(4, 5, 14)
        plt.axis('off')
        plt.subplot(4, 5, 15)
        plt.axis('off')
        
        # Row 4: Last 3 superimposed views (positions 16-18)
        for i, cmap_name in enumerate(superimposed_colormaps[3:]):
            superimposed_img = superimpose_gradcam_enhanced(img_array, heatmap, colormap=cmap_name, alpha=0.4)
            plt.subplot(4, 5, i + 16)
            plt.imshow(superimposed_img)
            plt.title(f'Superimposed ({cmap_name.title()})', fontsize=12)
            plt.axis('off')
        
        # Empty spaces in row 4
        plt.subplot(4, 5, 19)
        plt.axis('off')
        plt.subplot(4, 5, 20)
        plt.axis('off')

        plt.tight_layout()
        plt.subplots_adjust(top=0.92)
        
        # Save to temporary file and return
        temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.png')
        plt.savefig(temp_file.name, dpi=300, bbox_inches='tight')
        plt.close()
        
        return temp_file.name
    
    except Exception as e:
        return f"❌ Error creating detailed analysis: {str(e)}"

def create_quick_analysis(image):
    """Create quick 2x3 comparison view"""
    if not model_loaded or model is None or image is None:
        return "❌ Please upload an image for analysis."
    
    try:
        # Preprocess and predict
        processed_img, gray_img, img_array, _ = preprocess_image(image)
        img_batch = np.expand_dims(img_array, axis=0)
        prediction = model.predict(img_batch, verbose=0)[0][0]
        
        predicted_class = int(round(prediction))
        predicted_label = class_labels[predicted_class]
        confidence = prediction if predicted_class == 1 else 1 - prediction
        
        # Generate heatmap
        heatmap = make_gradcampp_heatmap(img_batch, model)
        if heatmap is None:
            return "❌ Error generating heatmap."
        
        # Create quick visualization with 3x3 layout to accommodate all colormaps
        fig, axes = plt.subplots(3, 3, figsize=(15, 15))
        color = 'green' if predicted_class == 0 else 'red'
        fig.suptitle(f'Quick Grad-CAM++ Analysis | Predicted: {predicted_label.upper()} ({confidence:.2%})',
                     fontsize=14, fontweight='bold', color=color)

        # Row 1: Original image and two main heatmaps
        axes[0, 0].imshow(processed_img)
        axes[0, 0].set_title("Original Image")
        axes[0, 0].axis('off')

        # Jet heatmap
        heatmap_resized = cv2.resize(heatmap, (IMG_WIDTH, IMG_HEIGHT))
        im1 = axes[0, 1].imshow(heatmap_resized, cmap='jet')
        axes[0, 1].set_title("Jet Heatmap")
        axes[0, 1].axis('off')
        plt.colorbar(im1, ax=axes[0, 1], fraction=0.046)

        # Plasma heatmap
        im2 = axes[0, 2].imshow(heatmap_resized, cmap='plasma')
        axes[0, 2].set_title("Plasma Heatmap")
        axes[0, 2].axis('off')
        plt.colorbar(im2, ax=axes[0, 2], fraction=0.046)

        # Rows 2-3: All 6 superimposed views
        superimposed_colormaps = ['jet', 'hot', 'plasma', 'viridis', 'inferno', 'cool']
        
        # Row 2: First 3 superimposed views
        for i, cmap_name in enumerate(superimposed_colormaps[:3]):
            superimposed_img = superimpose_gradcam_enhanced(img_array, heatmap, cmap_name)
            axes[1, i].imshow(superimposed_img)
            axes[1, i].set_title(f"Superimposed ({cmap_name.title()})")
            axes[1, i].axis('off')
        
        # Row 3: Last 3 superimposed views
        for i, cmap_name in enumerate(superimposed_colormaps[3:]):
            superimposed_img = superimpose_gradcam_enhanced(img_array, heatmap, cmap_name)
            axes[2, i].imshow(superimposed_img)
            axes[2, i].set_title(f"Superimposed ({cmap_name.title()})")
            axes[2, i].axis('off')

        plt.tight_layout()
        
        # Save to temporary file and return
        temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.png')
        plt.savefig(temp_file.name, dpi=300, bbox_inches='tight')
        plt.close()
        
        return temp_file.name
    
    except Exception as e:
        return f"❌ Error creating quick analysis: {str(e)}"

# --- GRADIO APP INTERFACE ---
def create_gradio_app():
    """Create the main Gradio interface"""
    
    # Custom CSS for better styling
    custom_css = """
    h2, h3{
      margin: 2.5rem initial;
    }
    .main-header {
        text-align: center;
        margin-bottom: 5rem;
        h1{
          font-size: 2.5rem; /* Adjust as needed */
          font-weight: bold;
          text-align: center;
          letter-spacing: -0.025em;
          margin-bottom: 1rem;
          /* Gradient masking */
          background: linear-gradient(90deg, #667eea 0%, #764ba2 100%);
          -webkit-background-clip: text;
          -webkit-text-fill-color: transparent;
        }
        p{
          font-size: 1.25rem;
        }
    }
    """

    theme = gr.themes.Base(
    primary_hue="indigo",
    )
    
    with gr.Blocks(title="🧠 Bioset - Brain Tumor MRI Detection", theme=theme, css=custom_css) as app:
        
        gr.HTML("""
        <div class="main-header">
            <h1>🧠 Bioset - Brain Tumor MRI Detection</h1>
            <p>Advanced AI-powered MRI analysis with explainable attention visualization with Enhanced Grad-CAM++.</p>
        </div>
        """)
        
        # Model status display
        model_status = "βœ… Model loaded successfully" if model_loaded else "❌ Model not available"
        gr.Markdown(f"**Model Status:** {model_status}")
        gr.Markdown("Please read the disclaimer at the bottom of the page first before use.")
        
        if not model_loaded:
            gr.Markdown("⚠️ **Warning**: Model file not found. Please ensure your trained model (.h5) is in the space's root directory.")
            
        gr.Markdown("""
        ---
        
        ## πŸ“– How to Use:
        1. **Upload an MRI brain scan** (JPEG, PNG, or other image formats)
        2. **View automatic preprocessing** and prediction results
        3. **Choose analysis type**: Quick for rapid assessment, Detailed for comprehensive visualization
        4. **Download results** for further analysis or documentation
        """)

        gr.Markdown("""
        ## Model Statistics:
        - **accuracy:** `0.9913`  
        - **val_accuracy:** `0.8824`   
        """)

        gr.Markdown("""
        ### Classification Report:  
        | Class         | Precision | Recall | F1-Score | Support |
        |---------------|-----------|--------|----------|---------|
        | **no**        | 0.89      | 0.85   | 0.87     | 20      |
        | **yes**       | 0.91      | 0.94   | 0.92     | 31      |
        | **accuracy**  |           |        | 0.90     | 51      |
        | **macro avg** | 0.90      | 0.89   | 0.90     | 51      |
        | **weighted avg** | 0.90   | 0.90   | 0.90     | 51      |
        """)
        
        with gr.Row():
            with gr.Column(scale=2):
                input_image = gr.Image(
                    label="πŸ“€ Upload MRI Brain Scan",
                    type="pil",
                    height=400
                )
                
            with gr.Column(scale=1):
                gr.Markdown("### πŸ”„ Preprocessing Preview")
                processed_image = gr.Image(
                    label="Processed (128x128 RGB)",
                    height=180,
                    interactive=False
                )
                grayscale_image = gr.Image(
                    label="Grayscale Preview",
                    height=180,
                    interactive=False
                )
        
        # Prediction results
        gr.Markdown("## 🎯 Prediction Results")
        prediction_output = gr.Markdown(value="Upload an image to see predictions...")
        
        # Analysis buttons
        gr.Markdown("## πŸ”¬ Grad-CAM++ Analysis")
        gr.Markdown("Choose your preferred analysis type:")
        
        with gr.Row():
            quick_btn = gr.Button(
                "⚑ Quick Analysis (2x3 Grid)", 
                variant="secondary", 
                size="lg",
                scale=1
            )
            detailed_btn = gr.Button(
                "πŸ”¬ Detailed Analysis (3x5 Grid)", 
                variant="primary", 
                size="lg",
                scale=1
            )
        
        # Analysis output
        analysis_output = gr.Image(
            label="πŸ“Š Analysis Results",
            height=700,
            interactive=False,
            show_download_button=True
        )
        
        # Information sections
        with gr.Row():
            with gr.Column():
                gr.Markdown("""
                ### ⚑ Quick Analysis Features:
                - **3x3 Grid Layout** for comprehensive quick view
                - **Original Image** with preprocessing
                - **Jet & Plasma Heatmaps** with colorbars
                - **6 Superimposed Views** (All color schemes)
                - **Fast Processing** (~3-4 seconds)
                - **Perfect for screening** multiple images
                ---
                """)
            
            with gr.Column():
                gr.Markdown("""
                ### πŸ”¬ Detailed Analysis Features:
                - **4x5 Grid Layout** for comprehensive analysis
                - **6 Heatmap Color Schemes** with individual colorbars
                - **Attention Profile Plot** showing vertical focus
                - **Statistical Analysis Panel** with quantitative metrics
                - **6 Enhanced Superimposed Views** with gamma correction
                - **Clinical-grade visualization** for detailed examination
                ---
                """)
        
        gr.Markdown("""
        ### 🎨 Color Scheme Guide:
        - **πŸ”₯ Jet**: Classic blue β†’ green β†’ yellow β†’ red progression (high contrast)
        - **πŸŒ‹ Hot**: Black β†’ red β†’ orange β†’ yellow (heat-like visualization)  
        - **🌌 Plasma**: Purple β†’ pink β†’ yellow (scientifically accurate)
        - **🌿 Viridis**: Dark blue β†’ green β†’ yellow (perceptually uniform)
        - **πŸ”₯ Inferno**: Black β†’ purple β†’ red β†’ yellow (high contrast heat)
        - **❄️ Cool**: Cyan β†’ blue β†’ magenta (cool color palette)
        
        ### πŸ“Š Understanding the Results:
        - **Bright regions** in heatmaps indicate areas the AI model focuses on
        - **Different color schemes** can reveal different aspects of attention patterns
        - **Confidence scores** above 80% are generally considered reliable
        - **Superimposed views** help correlate AI attention with anatomical structures
        """)
        
        # Footer
        gr.Markdown("""
        ---
        **⚠️ Medical Disclaimer**: This tool is for research and educational purposes only. 
        Always consult qualified medical professionals for clinical diagnosis and treatment decisions.
        """)
        
        # Event handlers
        def predict_and_update(image):
            result, processed, grayscale = predict_brain_tumor(image)
            return result, processed, grayscale
        
        def quick_analysis_handler(image):
            if not model_loaded:
                return None
            return create_quick_analysis(image)
        
        def detailed_analysis_handler(image):
            if not model_loaded:
                return None
            return create_detailed_analysis(image)
        
        # Connect event handlers
        input_image.change(
            fn=predict_and_update,
            inputs=[input_image],
            outputs=[prediction_output, processed_image, grayscale_image]
        )
        
        quick_btn.click(
            fn=quick_analysis_handler,
            inputs=[input_image],
            outputs=[analysis_output]
        )
        
        detailed_btn.click(
            fn=detailed_analysis_handler,
            inputs=[input_image],
            outputs=[analysis_output]
        )
    
    return app

# --- LAUNCH THE APP ---
if __name__ == "__main__":
    app = create_gradio_app()
    app.launch()