Spaces:
Sleeping
Sleeping
File size: 4,620 Bytes
1614de1 9439f68 1614de1 6044158 1614de1 a087cbd 35814cf 1614de1 35814cf 9439f68 1614de1 ae1ff75 013e4b8 ae1ff75 9439f68 ae1ff75 1614de1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
import gradio as gr
import joblib
import pandas as pd
# Load model and mappings
model = joblib.load('mushroom_classifier.pkl')
mappings = joblib.load('mappings.pkl')
feature_options = {
'cap-shape': {'bell': 'b', 'conical': 'c', 'convex': 'x', 'flat': 'f', 'knobbed': 'k', 'sunken': 's'},
'cap-surface': {'fibrous': 'f', 'grooves': 'g', 'scaly': 'y', 'smooth': 's'},
'cap-color': {'brown': 'n', 'buff': 'b', 'cinnamon': 'c', 'gray': 'g', 'green': 'r', 'pink': 'p', 'purple': 'u', 'red': 'e', 'white': 'w', 'yellow': 'y'},
'bruises': {'bruises': 't', 'no': 'f'},
'odor': {'almond': 'a', 'anise': 'l', 'creosote': 'c', 'fishy': 'y', 'foul': 'f', 'musty': 'm', 'none': 'n', 'pungent': 'p', 'spicy': 's'},
'gill-attachment': {'attached': 'a', 'descending': 'd', 'free': 'f', 'notched': 'n'},
'gill-spacing': {'close': 'c', 'crowded': 'w', 'distant': 'd'},
'gill-size': {'broad': 'b', 'narrow': 'n'},
'gill-color': {'black': 'k', 'brown': 'n', 'buff': 'b', 'chocolate': 'h', 'gray': 'g', 'green': 'r', 'orange': 'o', 'pink': 'p', 'purple': 'u', 'red': 'e', 'white': 'w', 'yellow': 'y'},
'stalk-shape': {'enlarging': 'e', 'tapering': 't'},
'stalk-root': {'bulbous': 'b', 'club': 'c', 'cup': 'u', 'equal': 'e', 'rhizomorphs': 'z', 'rooted': 'r', 'missing': '?'},
'stalk-surface-above-ring': {'fibrous': 'f', 'scaly': 'y', 'silky': 'k', 'smooth': 's'},
'stalk-surface-below-ring': {'fibrous': 'f', 'scaly': 'y', 'silky': 'k', 'smooth': 's'},
'stalk-color-above-ring': {'brown': 'n', 'buff': 'b', 'cinnamon': 'c', 'gray': 'g', 'orange': 'o', 'pink': 'p', 'red': 'e', 'white': 'w', 'yellow': 'y'},
'stalk-color-below-ring': {'brown': 'n', 'buff': 'b', 'cinnamon': 'c', 'gray': 'g', 'orange': 'o', 'pink': 'p', 'red': 'e', 'white': 'w', 'yellow': 'y'},
'veil-type': {'partial': 'p', 'universal': 'u'},
'veil-color': {'brown': 'n', 'orange': 'o', 'white': 'w', 'yellow': 'y'},
'ring-number': {'none': 'n', 'one': 'o', 'two': 't'},
'ring-type': {'cobwebby': 'c', 'evanescent': 'e', 'flaring': 'f', 'large': 'l', 'none': 'n', 'pendant': 'p', 'sheathing': 's', 'zone': 'z'},
'spore-print-color': {'black': 'k', 'brown': 'n', 'buff': 'b', 'chocolate': 'h', 'green': 'r', 'orange': 'o', 'purple': 'u', 'white': 'w', 'yellow': 'y'},
'population': {'abundant': 'a', 'clustered': 'c', 'numerous': 'n', 'scattered': 's', 'several': 'v', 'solitary': 'y'},
'habitat': {'grasses': 'g', 'leaves': 'l', 'meadows': 'm', 'paths': 'p', 'urban': 'u', 'waste': 'w', 'woods': 'd'}
}
# def predict_mushroom(features):
# numerical_features = {feature: feature_options[feature][value] for feature, value in features.items()}
# input_df = pd.DataFrame([numerical_features])
# prediction = model.predict(input_df)
# return 'Poisonous' if prediction[0] == 1 else 'Edible'
def predict_mushroom(*features):
# Convert the feature names to a dictionary based on the order
feature_names = list(mappings.keys())
numerical_features = {}
# Convert the string values to numerical values using the mappings
for i, feature in enumerate(features):
if feature in mappings[feature_names[i]]:
numerical_features[feature_names[i]] = mappings[feature_names[i]][feature]
else:
raise ValueError(f"Invalid value for feature '{feature_names[i]}': {feature}")
# Convert the numerical features into a DataFrame for the model
input_df = pd.DataFrame([numerical_features])
# Ensure the data is in the right format
try:
prediction = model.predict(input_df)
except Exception as e:
raise ValueError(f"Error during prediction: {e}")
# Return the classification result based on the model output
return 'Poisonous' if prediction[0] == 1 else 'Edible'
demo = gr.Interface(
fn=predict_mushroom,
inputs=[gr.Dropdown(choices=list(options.keys()), label=feature) for feature, options in feature_options.items()],
outputs="text",
title="MycoNom - Mushroom Edibility Classifier",
description="Select the mushroom features to determine if it's edible or poisonous.<br><br>**Disclaimer:** This model is for **educational purposes only** and should not be used for real-life mushroom classification or any decision-making processes related to the consumption of mushrooms. While the model performs well on the provided dataset, it has not been thoroughly validated for real-world scenarios and may not accurately detect poisonous mushrooms in all conditions. Always consult an expert or use trusted resources when identifying mushrooms."
)
demo.launch() |