File size: 4,916 Bytes
588b982
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import ToolNode, tools_condition
from langchain_core.tools import tool
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain.tools.retriever import create_retriever_tool
from supabase.client import create_client

load_dotenv()

# --- System Prompt Loader ---
def load_system_prompt(path="system_prompt.txt") -> SystemMessage:
    try:
        with open(path, encoding="utf-8") as f:
            return SystemMessage(content=f.read())
    except FileNotFoundError:
        return SystemMessage(content="You are a helpful assistant.")

sys_msg = load_system_prompt()

# --- Math Tools Factory ---
def math_tool(fn):
    return tool(fn)

@math_tool
def add(a: int, b: int) -> int:        return a + b
@math_tool
def subtract(a: int, b: int) -> int:   return a - b
@math_tool
def multiply(a: int, b: int) -> int:   return a * b
@math_tool
def divide(a: int, b: int) -> float:
    if b == 0: raise ValueError("Cannot divide by zero.")
    return a / b

@math_tool
def modulus(a: int, b: int) -> int:    return a % b

# --- Document Formatting Helper ---
def format_docs(docs, key: str, max_chars: int = None) -> dict:
    content = "\n\n---\n\n".join(
        f'<Document source="{d.metadata.get("source","")}" page="{d.metadata.get("page","")}" />\n'
        f'{d.page_content[:max_chars] if max_chars else d.page_content}\n</Document>'
        for d in docs
    )
    return {key: content}

# --- Info Tools ---
@tool
def wiki_search(query: str) -> dict:
    docs = WikipediaLoader(query=query, load_max_docs=2).load()
    return format_docs(docs, "wiki_results")

@tool
def web_search(query: str) -> dict:
    docs = TavilySearchResults(max_results=3).invoke(query=query)
    return format_docs(docs, "web_results")

@tool
def arvix_search(query: str) -> dict:
    docs = ArxivLoader(query=query, load_max_docs=3).load()
    return format_docs(docs, "arvix_results", max_chars=1000)

# --- Vector Retriever Setup ---
def build_vector_retriever():
    embed_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
    supa = create_client(os.getenv("SUPABASE_URL"), os.getenv("SUPABASE_SERVICE_KEY"))
    vs = SupabaseVectorStore(
        client=supa,
        embedding=embed_model,
        table_name="documents",
        query_name="match_documents_langchain"
    )
    return vs.as_retriever()

# --- LLM Factory ---
def get_llm(provider: str):
    if provider == "google":
        return ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
    if provider == "groq":
        return ChatGroq(model="qwen-qwq-32b", temperature=0)
    if provider == "huggingface":
        return ChatHuggingFace(llm=HuggingFaceEndpoint(
            url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
            temperature=0))
    raise ValueError(f"Unsupported provider: {provider}")

# --- Build Graph ---
def build_graph(provider: str = "google"):
    # tools list
    retriever = build_vector_retriever()
    question_tool = create_retriever_tool(
        retriever=retriever,
        name="Question Search",
        description="Retrieve similar Q&A from vector store"
    )
    tools = [
        add, subtract, multiply, divide, modulus,
        wiki_search, web_search, arvix_search,
        question_tool
    ]

    # LLM w/ tools
    llm = get_llm(provider).bind_tools(tools)

    # Nodes
    def assistant(state: MessagesState):
        msgs = [sys_msg] + state["messages"]
        resp = llm.invoke({"messages": msgs})
        return {"messages": [resp]}

    def retriever_node(state: MessagesState):
        query = state["messages"][-1].content
        doc = retriever.similarity_search(query, k=1)[0]
        text = doc.page_content
        answer = text.split("Final answer :")[-1].strip() if "Final answer :" in text else text
        return {"messages": [AIMessage(content=answer)]}

    # Graph assembly
    graph = StateGraph(MessagesState)
    graph.add_node("retriever", retriever_node)
    graph.add_node("assistant", assistant)
    graph.add_node("tools", ToolNode(tools))
    graph.add_edge(START, "retriever")
    graph.add_edge("retriever", "assistant")
    graph.add_conditional_edges("assistant", tools_condition)
    graph.add_edge("tools", "assistant")
    graph.set_entry_point("retriever")
    graph.set_finish_point("assistant")

    return graph.compile()