Spaces:
Sleeping
Sleeping
File size: 5,644 Bytes
a722ea2 7d0e758 bb3b3a0 7d0e758 a722ea2 7d0e758 a722ea2 7d0e758 a722ea2 7d0e758 a722ea2 7d0e758 a722ea2 7d0e758 a722ea2 7d0e758 a722ea2 7d0e758 a722ea2 7d0e758 a722ea2 7d0e758 a722ea2 7d0e758 a722ea2 7d0e758 a722ea2 7d0e758 a722ea2 7d0e758 ff3afb3 a722ea2 7d0e758 a722ea2 7d0e758 a722ea2 7d0e758 a722ea2 a42f937 a722ea2 7d0e758 a722ea2 7d0e758 a722ea2 7d0e758 a722ea2 7d0e758 a722ea2 7d0e758 a722ea2 7d0e758 a722ea2 e16981b a722ea2 7d0e758 a722ea2 7d0e758 a722ea2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
from fastai.vision.all import *
from io import BytesIO
import requests
import streamlit as st
import numpy as np
import torch
import time
import cv2
from numpy import random
import os
import sys
# 加入上層目錄到模組搜尋路徑中
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
from models.experimental import attempt_load
from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
from utils.plots import plot_one_box
def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
# Resize and pad image while meeting stride-multiple constraints
shape = img.shape[:2] # current shape [height, width]
if isinstance(new_shape, int):
new_shape = (new_shape, new_shape)
# Scale ratio (new / old)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
if not scaleup: # only scale down, do not scale up (for better test mAP)
r = min(r, 1.0)
# Compute padding
ratio = r, r # width, height ratios
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
if auto: # minimum rectangle
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
elif scaleFill: # stretch
dw, dh = 0.0, 0.0
new_unpad = (new_shape[1], new_shape[0])
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
dw /= 2 # divide padding into 2 sides
dh /= 2
if shape[::-1] != new_unpad: # resize
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
return img, ratio, (dw, dh)
def detect_modify(img0, model, conf=0.4, imgsz=640, conf_thres = 0.25, iou_thres=0.45):
st.image(img0, caption="Your image", use_column_width=True)
stride = int(model.stride.max()) # model stride
imgsz = check_img_size(imgsz, s=stride) # check img_size
# Padded resize
img0 = cv2.cvtColor(np.asarray(img0), cv2.COLOR_RGB2BGR)
img = letterbox(img0, imgsz, stride=stride)[0]
# Convert
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
img = np.ascontiguousarray(img)
# Get names and colors
names = model.module.names if hasattr(model, 'module') else model.names
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
# Run inference
old_img_w = old_img_h = imgsz
old_img_b = 1
t0 = time.time()
img = torch.from_numpy(img).to(device)
# img /= 255.0 # 0 - 255 to 0.0 - 1.0
img = img/255.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
# t1 = time_synchronized()
with torch.no_grad(): # Calculating gradients would cause a GPU memory leak
pred = model(img)[0]
# t2 = time_synchronized()
# Apply NMS
pred = non_max_suppression(pred, conf_thres, iou_thres)
# t3 = time_synchronized()
# Process detections
# for i, det in enumerate(pred): # detections per image
gn = torch.tensor(img0.shape)[[1, 0, 1, 0]] # normalization gain whwh
det = pred[0]
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], img0.shape).round()
# Print results
s = ''
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
# Write results
for *xyxy, conf, cls in reversed(det):
label = f'{names[int(cls)]} {conf:.2f}'
plot_one_box(xyxy, img0, label=label, color=colors[int(cls)], line_thickness=1)
f"""
### Prediction result:
"""
img0 = cv2.cvtColor(np.asarray(img0), cv2.COLOR_BGR2RGB)
st.image(img0, caption="Prediction Result", use_column_width=True)
#set paramters
# 取得目前檔案 (streamlit_app.py) 所在的目錄
current_dir = os.path.dirname(os.path.abspath(__file__))
# 回到根目錄後組合出 .pkl 檔案的路徑
weight_path = os.path.join(current_dir, 'best.pt')
imgsz = 640
conf = 0.4
conf_thres = 0.25
iou_thres=0.45
device = torch.device("cpu")
path = "./"
# Load model
#model = attempt_load(weight_path, map_location=torch.device('cpu')) # load FP32 model
ckpt = torch.load(weight_path, map_location=torch.device('cpu'), weights_only=False)
model = ckpt['ema' if ckpt.get('ema') else 'model'].float().fuse().eval()
"""
# YOLOv7
Detect whether a person is wearing a face mask or not.
"""
option = st.radio("", ["Upload Image", "Image URL"])
if option == "Upload Image":
uploaded_file = st.file_uploader("Please upload an image.")
if uploaded_file is not None:
img = PILImage.create(uploaded_file)
detect_modify(img, model, conf=conf, imgsz=imgsz, conf_thres=conf_thres, iou_thres=iou_thres)
else:
url = st.text_input("Please input a url.")
if url != "":
try:
response = requests.get(url)
pil_img = PILImage.create(BytesIO(response.content))
detect_modify(pil_img, model, conf=conf, imgsz=imgsz, conf_thres=conf_thres, iou_thres=iou_thres)
except:
st.text("Problem reading image from", url)
|