|
import streamlit as st |
|
import yfinance as yf |
|
import pandas as pd |
|
import plotly.graph_objects as go |
|
import plotly.express as px |
|
from datetime import datetime, timedelta |
|
import base64 |
|
|
|
|
|
st.set_page_config(page_title="JQuant - Marktanalyse", page_icon="📊", layout="wide") |
|
|
|
|
|
def get_base64_image(image_path): |
|
with open(image_path, "rb") as img_file: |
|
return base64.b64encode(img_file.read()).decode() |
|
|
|
|
|
image_base64 = get_base64_image("/Users/jagdipsingh/JQ.png") |
|
|
|
|
|
st.markdown( |
|
f""" |
|
<style> |
|
.fixed-logo {{ |
|
position: fixed; |
|
top: 10px; |
|
left: 50%; |
|
transform: translateX(-50%); |
|
z-index: 1000; |
|
text-align: center; |
|
}} |
|
.small-text {{ |
|
font-size: 14px; /* Kleinere Schriftgröße */ |
|
margin-top: 30px; /* Abstand nach unten */ |
|
text-align: center; |
|
color: gray; /* Dezente graue Farbe */ |
|
}} |
|
</style> |
|
<div class="fixed-logo"> |
|
<img src="data:image/png;base64,{image_base64}" width="250"> |
|
</div> |
|
""", |
|
unsafe_allow_html=True |
|
) |
|
|
|
|
|
default_end_date = datetime.today().date() |
|
default_start_date = default_end_date - timedelta(days=365) |
|
|
|
|
|
st.markdown("<br><br><br>", unsafe_allow_html=True) |
|
|
|
|
|
st.title("📈 Interaktive Analyse von Aktienindizes") |
|
|
|
|
|
|
|
indices = { |
|
"S&P 500 (USA)": "^GSPC", |
|
"Nasdaq 100 (USA)": "^NDX", |
|
"Dow Jones (USA)": "^DJI", |
|
"Russell 2000 (USA)": "^RUT", |
|
} |
|
|
|
|
|
ticker1_name = st.selectbox("📈 Wähle Index 1:", list(indices.keys()), index=0) |
|
ticker2_name = st.selectbox("📈 Wähle Index 2:", list(indices.keys()), index=1) |
|
|
|
|
|
ticker1 = indices[ticker1_name] |
|
ticker2 = indices[ticker2_name] |
|
|
|
|
|
start_date = st.date_input("Startdatum", default_start_date) |
|
end_date = st.date_input("Enddatum", default_end_date) |
|
|
|
|
|
if st.button("Daten abrufen & Diagramme anzeigen"): |
|
|
|
|
|
data = {} |
|
for name, symbol in [(ticker1_name, ticker1), (ticker2_name, ticker2)]: |
|
ticker = yf.Ticker(symbol) |
|
df = ticker.history(start=start_date, end=end_date) |
|
data[name] = df["Close"] |
|
|
|
|
|
df_indices = pd.DataFrame(data) |
|
|
|
|
|
if df_indices.empty: |
|
st.error("❌ Keine Daten für die gewählten Indizes gefunden!") |
|
else: |
|
|
|
fig1 = go.Figure() |
|
|
|
|
|
fig1.add_trace(go.Scatter(x=df_indices.index, y=df_indices[ticker1_name], mode='lines', |
|
name=ticker1_name, yaxis='y1')) |
|
|
|
|
|
fig1.add_trace(go.Scatter(x=df_indices.index, y=df_indices[ticker2_name], mode='lines', |
|
name=ticker2_name, yaxis='y2')) |
|
|
|
|
|
fig1.update_layout( |
|
title=f"Vergleich der Close-Preise: {ticker1_name} vs. {ticker2_name}", |
|
xaxis=dict(title="Datum"), |
|
yaxis=dict(title=f"{ticker1_name} Preis (USD)", side='left', showgrid=False), |
|
yaxis2=dict(title=f"{ticker2_name} Preis (USD)", side='right', overlaying='y', showgrid=False), |
|
legend=dict(x=0, y=1), |
|
hovermode="x" |
|
) |
|
|
|
|
|
st.plotly_chart(fig1, use_container_width=True) |
|
|
|
|
|
df_normalized = df_indices / df_indices.iloc[0] * 100 |
|
|
|
fig2 = px.line(df_normalized, x=df_normalized.index, y=df_normalized.columns, |
|
title=f"Normierter Vergleich der Close-Preise: {ticker1_name} vs. {ticker2_name}", |
|
labels={"value": "Index (Startwert = 100)", "variable": "Index"}, |
|
template="plotly_white") |
|
|
|
|
|
st.plotly_chart(fig2, use_container_width=True) |
|
|