Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import yfinance as yf
|
3 |
+
import pandas as pd
|
4 |
+
import plotly.graph_objects as go
|
5 |
+
import plotly.express as px
|
6 |
+
from datetime import datetime, timedelta
|
7 |
+
import base64
|
8 |
+
|
9 |
+
# === Grundlegendes Design & Titel ===
|
10 |
+
st.set_page_config(page_title="JQuant - Marktanalyse", page_icon="📊", layout="wide")
|
11 |
+
|
12 |
+
# Funktion zum Konvertieren des Bildes in Base64
|
13 |
+
def get_base64_image(image_path):
|
14 |
+
with open(image_path, "rb") as img_file:
|
15 |
+
return base64.b64encode(img_file.read()).decode()
|
16 |
+
|
17 |
+
# Logo als Base64 einlesen
|
18 |
+
image_base64 = get_base64_image("/Users/jagdipsingh/JQ.png")
|
19 |
+
|
20 |
+
# CSS für fixiertes Logo OHNE Hintergrund & kleinerer Text
|
21 |
+
st.markdown(
|
22 |
+
f"""
|
23 |
+
<style>
|
24 |
+
.fixed-logo {{
|
25 |
+
position: fixed;
|
26 |
+
top: 10px;
|
27 |
+
left: 50%;
|
28 |
+
transform: translateX(-50%);
|
29 |
+
z-index: 1000;
|
30 |
+
text-align: center;
|
31 |
+
}}
|
32 |
+
.small-text {{
|
33 |
+
font-size: 14px; /* Kleinere Schriftgröße */
|
34 |
+
margin-top: 30px; /* Abstand nach unten */
|
35 |
+
text-align: center;
|
36 |
+
color: gray; /* Dezente graue Farbe */
|
37 |
+
}}
|
38 |
+
</style>
|
39 |
+
<div class="fixed-logo">
|
40 |
+
<img src="data:image/png;base64,{image_base64}" width="250">
|
41 |
+
</div>
|
42 |
+
""",
|
43 |
+
unsafe_allow_html=True
|
44 |
+
)
|
45 |
+
|
46 |
+
# Standardwerte für das Datum: heute und ein Jahr davor
|
47 |
+
default_end_date = datetime.today().date()
|
48 |
+
default_start_date = default_end_date - timedelta(days=365)
|
49 |
+
|
50 |
+
# Abstand nach unten hinzufügen, damit der Titel nicht direkt unter dem fixierten Logo ist
|
51 |
+
st.markdown("<br><br><br>", unsafe_allow_html=True) # Fügt 3 Zeilen Abstand hinzu
|
52 |
+
|
53 |
+
# Titel der App
|
54 |
+
st.title("📈 Interaktive Analyse von Aktienindizes")
|
55 |
+
|
56 |
+
|
57 |
+
# Liste der wichtigsten Aktien-Indizes mit Yahoo Finance Ticker
|
58 |
+
indices = {
|
59 |
+
"S&P 500 (USA)": "^GSPC",
|
60 |
+
"Nasdaq 100 (USA)": "^NDX",
|
61 |
+
"Dow Jones (USA)": "^DJI",
|
62 |
+
"Russell 2000 (USA)": "^RUT",
|
63 |
+
}
|
64 |
+
|
65 |
+
# Dropdown für Ticker 1 & Ticker 2
|
66 |
+
ticker1_name = st.selectbox("📈 Wähle Index 1:", list(indices.keys()), index=0)
|
67 |
+
ticker2_name = st.selectbox("📈 Wähle Index 2:", list(indices.keys()), index=1)
|
68 |
+
|
69 |
+
# Die zugehörigen Ticker aus dem Dictionary holen
|
70 |
+
ticker1 = indices[ticker1_name]
|
71 |
+
ticker2 = indices[ticker2_name]
|
72 |
+
|
73 |
+
# Benutzer kann das Datum weiterhin anpassen
|
74 |
+
start_date = st.date_input("Startdatum", default_start_date)
|
75 |
+
end_date = st.date_input("Enddatum", default_end_date)
|
76 |
+
|
77 |
+
# Button zum Laden der Daten
|
78 |
+
if st.button("Daten abrufen & Diagramme anzeigen"):
|
79 |
+
|
80 |
+
# Daten abrufen
|
81 |
+
data = {}
|
82 |
+
for name, symbol in [(ticker1_name, ticker1), (ticker2_name, ticker2)]:
|
83 |
+
ticker = yf.Ticker(symbol)
|
84 |
+
df = ticker.history(start=start_date, end=end_date)
|
85 |
+
data[name] = df["Close"]
|
86 |
+
|
87 |
+
# In DataFrame umwandeln
|
88 |
+
df_indices = pd.DataFrame(data)
|
89 |
+
|
90 |
+
# Falls keine Daten geladen wurden, abbrechen
|
91 |
+
if df_indices.empty:
|
92 |
+
st.error("❌ Keine Daten für die gewählten Indizes gefunden!")
|
93 |
+
else:
|
94 |
+
# --------- 1. INTERAKTIVER CHART: Vergleich mit zwei Achsen ---------
|
95 |
+
fig1 = go.Figure()
|
96 |
+
|
97 |
+
# Linke Achse (Ticker 1)
|
98 |
+
fig1.add_trace(go.Scatter(x=df_indices.index, y=df_indices[ticker1_name], mode='lines',
|
99 |
+
name=ticker1_name, yaxis='y1'))
|
100 |
+
|
101 |
+
# Rechte Achse (Ticker 2)
|
102 |
+
fig1.add_trace(go.Scatter(x=df_indices.index, y=df_indices[ticker2_name], mode='lines',
|
103 |
+
name=ticker2_name, yaxis='y2'))
|
104 |
+
|
105 |
+
# Layout mit zwei Achsen definieren
|
106 |
+
fig1.update_layout(
|
107 |
+
title=f"Vergleich der Close-Preise: {ticker1_name} vs. {ticker2_name}",
|
108 |
+
xaxis=dict(title="Datum"),
|
109 |
+
yaxis=dict(title=f"{ticker1_name} Preis (USD)", side='left', showgrid=False),
|
110 |
+
yaxis2=dict(title=f"{ticker2_name} Preis (USD)", side='right', overlaying='y', showgrid=False),
|
111 |
+
legend=dict(x=0, y=1),
|
112 |
+
hovermode="x"
|
113 |
+
)
|
114 |
+
|
115 |
+
# Streamlit: Interaktives Chart anzeigen
|
116 |
+
st.plotly_chart(fig1, use_container_width=True)
|
117 |
+
|
118 |
+
# --------- 2. INTERAKTIVER CHART: Normierter Vergleich ---------
|
119 |
+
df_normalized = df_indices / df_indices.iloc[0] * 100
|
120 |
+
|
121 |
+
fig2 = px.line(df_normalized, x=df_normalized.index, y=df_normalized.columns,
|
122 |
+
title=f"Normierter Vergleich der Close-Preise: {ticker1_name} vs. {ticker2_name}",
|
123 |
+
labels={"value": "Index (Startwert = 100)", "variable": "Index"},
|
124 |
+
template="plotly_white")
|
125 |
+
|
126 |
+
# Streamlit: Interaktives Chart anzeigen
|
127 |
+
st.plotly_chart(fig2, use_container_width=True)
|