File size: 7,641 Bytes
87d5e36 bd820cc 9463232 293c1c2 9463232 bd820cc 9463232 bd820cc 293c1c2 9463232 bd820cc 9463232 293c1c2 5de9a88 9463232 5449034 caa7567 e3ddefb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import io
import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import make_pipeline
from sklearn.svm import SVR
from sklearn.ensemble import RandomForestRegressor
st.title("Webcam Color Detection Charting")
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
time_frame_options = [
"All",
"1 second",
"5 seconds",
"10 seconds",
"30 seconds",
"1 minute",
"5 minutes",
"10 minutes",
"30 minutes",
"60 minutes",
]
time_frame = st.selectbox("Data Time Frame", time_frame_options)
regression_options = [
"None",
"Linear Regression",
"Polynomial Regression",
"SVR (Support Vector Regression)",
"Random Forest Regression",
]
regression_type = st.selectbox("Regression Analysis Type", regression_options)
if uploaded_file is not None:
# CSV νμΌ μ½κΈ°
data = pd.read_csv(uploaded_file)
# μκ° νλ μμ λ°λ₯Έ λ°μ΄ν° νν°λ§
if time_frame != "All":
seconds = {
"1 second": 1,
"5 seconds": 5,
"10 seconds": 10,
"30 seconds": 30,
"1 minute": 60,
"5 minutes": 300,
"10 minutes": 600,
"30 minutes": 1800,
"60 minutes": 3600,
}
data['timestamp'] = pd.to_datetime(data['timestamp'], unit='ms')
data.set_index('timestamp', inplace=True)
data = data.resample(f"{seconds[time_frame]}S").mean().dropna().reset_index()
# μ°¨νΈ μμ±
fig, axes = plt.subplots(2, 1, figsize=(10, 8))
# RGB μ°¨νΈ
axes[0].plot(data['R'], 'r', label='R')
axes[0].plot(data['G'], 'g', label='G')
axes[0].plot(data['B'], 'b', label='B')
# νκ· λΆμ μν
X = np.arange(len(data)).reshape(-1, 1)
# μ ν νκ·
if regression_type == "Linear Regression":
model = LinearRegression()
model.fit(X, data['R'])
axes[0].plot(X, model.predict(X), 'r--')
st.write(f"R: y = {model.coef_[0]} * x + {model.intercept_}")
model.fit(X, data['G'])
axes[0].plot(X, model.predict(X), 'g--')
st.write(f"G: y = {model.coef_[0]} * x + {model.intercept_}")
model.fit(X, data['B'])
axes[0].plot(X, model.predict(X), 'b--')
st.write(f"B: y = {model.coef_[0]} * x + {model.intercept_}")
# λ€ν νκ·
elif regression_type == "Polynomial Regression":
polynomial_features = PolynomialFeatures(degree=2)
model = make_pipeline(polynomial_features, LinearRegression())
model.fit(X, data['R'])
axes[0].plot(X, model.predict(X), 'r--')
model.fit(X, data['G'])
axes[0].plot(X, model.predict(X), 'g--')
model.fit(X, data['B'])
axes[0].plot(X, model.predict(X), 'b--')
st.write("Polynomial regression equation is not easily representable.")
# SVR (Support Vector Regression)
elif regression_type == "SVR (Support Vector Regression)":
model = SVR()
model.fit(X, data['R'])
axes[0].plot(X, model.predict(X), 'r--')
model.fit(X, data['G'])
axes[0].plot(X, model.predict(X), 'g--')
model.fit(X, data['B'])
axes[0].plot(X, model.predict(X), 'b--')
st.write("SVR equation is not easily representable.")
# Random Forest Regression
elif regression_type == "Random Forest Regression":
model = RandomForestRegressor()
model.fit(X, data['R'])
axes[0].plot(X, model.predict(X), 'r--')
model.fit(X, data['G'])
axes[0].plot(X, model.predict(X), 'g--')
model.fit(X, data['B'])
axes[0].plot(X, model.predict(X), 'b--')
st.write("Random Forest equation is not easily representable.")
axes[0].legend(loc='upper right')
axes[0].set_title('RGB Values')
# HSV μ°¨νΈ
axes[1].plot(data['H'], 'r', label='H')
axes[1].plot(data['S'], 'g', label='S')
axes[1].plot(data['V'], 'b', label='V')
axes[1].legend(loc='upper right')
axes[1].set_title('HSV Values')
st.pyplot(fig)uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
time_frame_options = [
"All",
"1 second",
"5 seconds",
"10 seconds",
"30 seconds",
"1 minute",
"5 minutes",
"10 minutes",
"30 minutes",
"60 minutes",
]
time_frame = st.selectbox("Data Time Frame", time_frame_options)
regression_options = [
"None",
"Linear Regression",
"Polynomial Regression",
"SVR (Support Vector Regression)",
"Random Forest Regression",
]
regression_type = st.selectbox("Regression Analysis Type", regression_options)
if uploaded_file is not None:
# CSV νμΌ μ½κΈ°
data = pd.read_csv(uploaded_file)
# μκ° νλ μμ λ°λ₯Έ λ°μ΄ν° νν°λ§
if time_frame != "All":
seconds = {
"1 second": 1,
"5 seconds": 5,
"10 seconds": 10,
"30 seconds": 30,
"1 minute": 60,
"5 minutes": 300,
"10 minutes": 600,
"30 minutes": 1800,
"60 minutes": 3600,
}
data['timestamp'] = pd.to_datetime(data['timestamp'], unit='ms')
data.set_index('timestamp', inplace=True)
data = data.resample(f"{seconds[time_frame]}S").mean().dropna().reset_index()
# μ°¨νΈ μμ±
fig, axes = plt.subplots(2, 1, figsize=(10, 8))
# RGB μ°¨νΈ
axes[0].plot(data['R'], 'r', label='R')
axes[0].plot(data['G'], 'g', label='G')
axes[0].plot(data['B'], 'b', label='B')
# νκ· λΆμ μν
X = np.arange(len(data)).reshape(-1, 1)
# μ ν νκ·
if regression_type == "Linear Regression":
model = LinearRegression()
model.fit(X, data['R'])
axes[0].plot(X, model.predict(X), 'r--')
st.write(f"R: y = {model.coef_[0]} * x + {model.intercept_}")
model.fit(X, data['G'])
axes[0].plot(X, model.predict(X), 'g--')
st.write(f"G: y = {model.coef_[0]} * x + {model.intercept_}")
model.fit(X, data['B'])
axes[0].plot(X, model.predict(X), 'b--')
st.write(f"B: y = {model.coef_[0]} * x + {model.intercept_}")
# λ€ν νκ·
elif regression_type == "Polynomial Regression":
polynomial_features = PolynomialFeatures(degree=2)
model = make_pipeline(polynomial_features, LinearRegression())
model.fit(X, data['R'])
axes[0].plot(X, model.predict(X), 'r--')
model.fit(X, data['G'])
axes[0].plot(X, model.predict(X), 'g--')
model.fit(X, data['B'])
axes[0].plot(X, model.predict(X), 'b--')
st.write("Polynomial regression equation is not easily representable.")
# SVR (Support Vector Regression)
elif regression_type == "SVR (Support Vector Regression)":
model = SVR()
model.fit(X, data['R'])
axes[0].plot(X, model.predict(X), 'r--')
model.fit(X, data['G'])
axes[0].plot(X, model.predict(X), 'g--')
model.fit(X, data['B'])
axes[0].plot(X, model.predict(X), 'b--')
st.write("SVR equation is not easily representable.")
# Random Forest Regression
elif regression_type == "Random Forest Regression":
model = RandomForestRegressor()
model.fit(X, data['R'])
axes[0].plot(X, model.predict(X), 'r--')
model.fit(X, data['G'])
axes[0].plot(X, model.predict(X), 'g--')
model.fit(X, data['B'])
axes[0].plot(X, model.predict(X), 'b--')
st.write("Random Forest equation is not easily representable.")
axes[0].legend(loc='upper right')
axes[0].set_title('RGB Values')
# HSV μ°¨νΈ
axes[1].plot(data['H'], 'r', label='H')
axes[1].plot(data['S'], 'g', label='S')
axes[1].plot(data['V'], 'b', label='V')
axes[1].legend(loc='upper right')
axes[1].set_title('HSV Values')
|