Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,11 @@
|
|
2 |
import streamlit as st
|
3 |
import pandas as pd
|
4 |
import matplotlib.pyplot as plt
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
st.title("Webcam Color Detection Charting")
|
7 |
|
@@ -52,3 +57,38 @@ if uploaded_file is not None:
|
|
52 |
|
53 |
ax.legend(loc='upper left')
|
54 |
st.pyplot(fig)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import streamlit as st
|
3 |
import pandas as pd
|
4 |
import matplotlib.pyplot as plt
|
5 |
+
from sklearn.linear_model import LinearRegression
|
6 |
+
from sklearn.preprocessing import PolynomialFeatures
|
7 |
+
from sklearn.pipeline import make_pipeline
|
8 |
+
from sklearn.svm import SVR
|
9 |
+
from sklearn.ensemble import RandomForestRegressor
|
10 |
|
11 |
st.title("Webcam Color Detection Charting")
|
12 |
|
|
|
57 |
|
58 |
ax.legend(loc='upper left')
|
59 |
st.pyplot(fig)
|
60 |
+
|
61 |
+
# Selecting target and features
|
62 |
+
target_column = st.selectbox("Select Target Column", options=selected_columns)
|
63 |
+
feature_columns = st.multiselect("Select Feature Columns", options=[col for col in selected_columns if col != target_column])
|
64 |
+
|
65 |
+
# Defining models
|
66 |
+
models = {
|
67 |
+
"Linear Regression": LinearRegression(),
|
68 |
+
"Polynomial Regression": make_pipeline(PolynomialFeatures(degree=2), LinearRegression()),
|
69 |
+
"SVR (Support Vector Regression)": SVR(),
|
70 |
+
"Random Forest Regression": RandomForestRegressor()
|
71 |
+
}
|
72 |
+
|
73 |
+
# Selecting model
|
74 |
+
selected_model = st.selectbox("Select Regression Model", options=list(models.keys()))
|
75 |
+
|
76 |
+
# Fitting the model
|
77 |
+
if st.button("Fit Model"):
|
78 |
+
if feature_columns: # Check if feature columns are selected
|
79 |
+
X = data[feature_columns]
|
80 |
+
y = data[target_column]
|
81 |
+
model = models[selected_model]
|
82 |
+
model.fit(X, y)
|
83 |
+
|
84 |
+
# Predicting and plotting
|
85 |
+
predictions = model.predict(X)
|
86 |
+
fig, ax = plt.subplots(figsize=(10, 5))
|
87 |
+
ax.plot(y, label="Actual")
|
88 |
+
ax.plot(predictions, label="Predicted")
|
89 |
+
ax.legend(loc='upper left')
|
90 |
+
st.pyplot(fig)
|
91 |
+
else:
|
92 |
+
st.error("Please select at least one feature column.")
|
93 |
+
else:
|
94 |
+
st.warning("Please upload a CSV file.")
|