Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
|
2 |
import streamlit as st
|
3 |
import pandas as pd
|
4 |
import numpy as np
|
@@ -24,7 +23,7 @@ def fit_model(data, model_type, x_values, y_values):
|
|
24 |
x_values = x_values.reshape(-1, 1)
|
25 |
model.fit(x_values, y_values)
|
26 |
prediction = model.predict(x_values)
|
27 |
-
equation = f'y = {
|
28 |
elif model_type == 'Polynomial Regression':
|
29 |
polynomial_features = PolynomialFeatures(degree=2)
|
30 |
x_values_poly = polynomial_features.fit_transform(x_values.reshape(-1, 1))
|
@@ -48,7 +47,7 @@ def app():
|
|
48 |
|
49 |
# Selecting R, G, B, H, S, V
|
50 |
color_component = st.selectbox("Select color component", ['R', 'G', 'B', 'H', 'S', 'V'])
|
51 |
-
st.write(f"Selected component: {
|
52 |
selected_data = data[color_component].values
|
53 |
|
54 |
# Selecting regression model
|
@@ -59,10 +58,10 @@ def app():
|
|
59 |
|
60 |
# Fitting the selected model
|
61 |
model, prediction, equation = fit_model(data, regression_model, x_values, y_values)
|
62 |
-
st.write(f"Equation: {
|
63 |
|
64 |
# Plotting the data and model
|
65 |
plot_data(data, x_values, y_values, model, prediction)
|
66 |
|
67 |
-
#
|
68 |
# app()
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
|
|
23 |
x_values = x_values.reshape(-1, 1)
|
24 |
model.fit(x_values, y_values)
|
25 |
prediction = model.predict(x_values)
|
26 |
+
equation = f'y = {model.coef_[0]:.4f}x + {model.intercept_:.4f}'
|
27 |
elif model_type == 'Polynomial Regression':
|
28 |
polynomial_features = PolynomialFeatures(degree=2)
|
29 |
x_values_poly = polynomial_features.fit_transform(x_values.reshape(-1, 1))
|
|
|
47 |
|
48 |
# Selecting R, G, B, H, S, V
|
49 |
color_component = st.selectbox("Select color component", ['R', 'G', 'B', 'H', 'S', 'V'])
|
50 |
+
st.write(f"Selected component: {color_component}")
|
51 |
selected_data = data[color_component].values
|
52 |
|
53 |
# Selecting regression model
|
|
|
58 |
|
59 |
# Fitting the selected model
|
60 |
model, prediction, equation = fit_model(data, regression_model, x_values, y_values)
|
61 |
+
st.write(f"Equation: {equation}")
|
62 |
|
63 |
# Plotting the data and model
|
64 |
plot_data(data, x_values, y_values, model, prediction)
|
65 |
|
66 |
+
# Uncomment the next line to run the app locally
|
67 |
# app()
|