Spaces:
Build error
Build error
import streamlit as st | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from sklearn.datasets import make_blobs | |
from sklearn.cluster import KMeans | |
def generate_data(n_samples=300): | |
data, _ = make_blobs(n_samples=n_samples, centers=4, cluster_std=1.0, random_state=42) | |
return data | |
def plot_clusters(data, k): | |
kmeans = KMeans(n_clusters=k) | |
y_kmeans = kmeans.fit_predict(data) | |
plt.scatter(data[:, 0], data[:, 1], c=y_kmeans, s=50, cmap='viridis') | |
centers = kmeans.cluster_centers_ | |
plt.scatter(centers[:, 0], centers[:, 1], c='red', s=200, alpha=0.75, marker='X') | |
plt.title(f'K-means Clustering with k={k}') | |
plt.xlabel('Feature 1') | |
plt.ylabel('Feature 2') | |
plt_fig = plt | |
return plt_fig | |
def main(): | |
st.title("K-means Clustering Simulator") | |
st.write("This is a simple simulator to visualize how k-means clustering works.") | |
# 데이터 생성 및 추가 | |
if 'data' not in st.session_state: | |
st.session_state.data = np.array([]).reshape(0, 2) | |
add_point = st.button("Add Random Data Point") | |
if add_point: | |
new_point = np.array([[np.random.uniform(0, 100), np.random.uniform(0, 100)]]) | |
st.session_state.data = np.vstack([st.session_state.data, new_point]) | |
x_coord = st.number_input("X Coordinate", min_value=0.0, max_value=100.0, value=50.0) | |
y_coord = st.number_input("Y Coordinate", min_value=0.0, max_value=100.0, value=50.0) | |
add_custom_point = st.button("Add Custom Data Point") | |
if add_custom_point: | |
st.session_state.data = np.vstack([st.session_state.data, [x_coord, y_coord]]) | |
st.write("Here is the data:") | |
plt.scatter(st.session_state.data[:, 0], st.session_state.data[:, 1], s=50, cmap='viridis') | |
st.pyplot() | |
k = st.slider("Select the number of clusters (k)", 1, 10, 4) | |
st.write(f"You selected k={k}") | |
plt_fig = plot_clusters(st.session_state.data, k) | |
st.pyplot(plt_fig) | |
if __name__ == '__main__': | |
main() | |