File size: 1,943 Bytes
d21e97b 2baeed9 d21e97b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
# Generate the datasets
np.random.seed(42)
num_samples = 100
traffic_centers = [(20, 20), (80, 20)]
nature_centers = [(20, 80), (80, 80)]
population_centers = [(50, 50), (30, 30), (70, 70)]
traffic_data = [np.random.normal(center, 10, (num_samples, 2)) for center in traffic_centers]
nature_data = [np.random.normal(center, 10, (num_samples, 2)) for center in nature_centers]
population_data = [np.random.normal(center, 10, (num_samples, 2)) for center in population_centers]
traffic_df = pd.DataFrame(np.vstack(traffic_data), columns=["x", "y"])
nature_df = pd.DataFrame(np.vstack(nature_data), columns=["x", "y"])
population_df = pd.DataFrame(np.vstack(population_data), columns=["x", "y"])
def apply_kmeans(data, k):
kmeans = KMeans(n_clusters=k, random_state=42).fit(data)
centroids = kmeans.cluster_centers_
labels = kmeans.labels_
return centroids, labels
def main():
st.title("K-means Clustering Simulator")
dataset = st.selectbox("Choose a dataset:", ["", "๊ตํต์ ๊ทผ์ฑ", "์์ฐํ๊ฒฝ", "์ธ๊ตฌ๋ฐ์ง๋"])
k_value = st.slider("Select k value:", 1, 10)
data = None
if dataset == "๊ตํต์ ๊ทผ์ฑ":
data = traffic_df
elif dataset == "์์ฐํ๊ฒฝ":
data = nature_df
elif dataset == "์ธ๊ตฌ๋ฐ์ง๋":
data = population_df
if data is not None:
centroids, labels = apply_kmeans(data.values, k_value)
fig, ax = plt.subplots(figsize=(8, 8))
ax.scatter(data['x'], data['y'], c=labels, cmap='viridis')
ax.scatter(centroids[:, 0], centroids[:, 1], s=200, c='red', marker='X')
ax.set_xlim(0, 100)
ax.set_ylim(0, 100)
ax.set_title(f"K-means clustering result for {dataset} Dataset (k={k_value})")
st.pyplot(fig)
if __name__ == "__main__":
main()
|