k-meansim / app.py
JUNGU's picture
Update app.py
10981ed
raw
history blame
2.53 kB
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
# Data Generation
np.random.seed(42)
num_samples = 30
traffic_centers = [(20, 20), (80, 80)]
nature_centers = [(0, 80), (80, 0)]
population_centers = [(0, 0), (50, 50), (100, 100)]
traffic_data = np.random.uniform(0, 100, (num_samples * len(traffic_centers), 2))
nature_data = np.random.uniform(0, 100, (num_samples * len(nature_centers), 2))
population_data = np.random.uniform(0, 100, (num_samples * len(population_centers), 2))
traffic_df = pd.DataFrame(traffic_data, columns=["x", "y"])
nature_df = pd.DataFrame(nature_data, columns=["x", "y"])
population_df = pd.DataFrame(population_data, columns=["x", "y"])
def apply_kmeans(data, k):
kmeans = KMeans(n_clusters=k, random_state=42).fit(data)
centroids = kmeans.cluster_centers_
labels = kmeans.labels_
return centroids, labels
def main():
st.title("K-means Clustering Simulator")
# Global variables declaration
global traffic_df, nature_df, population_df
if st.button("Initialize Datasets"):
traffic_data = np.random.uniform(0, 100, (num_samples * len(traffic_centers), 2))
nature_data = np.random.uniform(0, 100, (num_samples * len(nature_centers), 2))
population_data = np.random.uniform(0, 100, (num_samples * len(population_centers), 2))
traffic_df = pd.DataFrame(traffic_data, columns=["x", "y"])
nature_df = pd.DataFrame(nature_data, columns=["x", "y"])
population_df = pd.DataFrame(population_data, columns=["x", "y"])
datasets = st.multiselect("Choose datasets:", ["๊ตํ†ต์ ‘๊ทผ์„ฑ", "์ž์—ฐํ™˜๊ฒฝ", "์ธ๊ตฌ๋ฐ€์ง‘๋„"])
k_value = st.slider("Select k value:", 1, 10)
dataset_mapping = {
"๊ตํ†ต์ ‘๊ทผ์„ฑ": traffic_df,
"์ž์—ฐํ™˜๊ฒฝ": nature_df,
"์ธ๊ตฌ๋ฐ€์ง‘๋„": population_df
}
if datasets:
combined_data = pd.concat([dataset_mapping[dataset_name] for dataset_name in datasets])
fig, ax = plt.subplots(figsize=(8, 8))
centroids, labels = apply_kmeans(combined_data.values, k_value)
ax.scatter(combined_data['x'], combined_data['y'], c=labels, cmap='viridis')
ax.scatter(centroids[:, 0], centroids[:, 1], s=200, c='red', marker='X')
ax.set_xlim(0, 100)
ax.set_ylim(0, 100)
ax.set_title(f"K-means clustering result (k={k_value})")
st.pyplot(fig)
if __name__ == "__main__":
main()