Update app.py
Browse files
app.py
CHANGED
@@ -25,9 +25,13 @@ def apply_kmeans(data, k):
|
|
25 |
labels = kmeans.labels_
|
26 |
return centroids, labels
|
27 |
|
|
|
28 |
def main():
|
29 |
st.title("K-means Clustering Simulator")
|
30 |
|
|
|
|
|
|
|
31 |
if st.button("Initialize Datasets"):
|
32 |
traffic_data = np.random.uniform(0, 100, (num_samples * len(traffic_centers), 2))
|
33 |
nature_data = np.random.uniform(0, 100, (num_samples * len(nature_centers), 2))
|
@@ -45,7 +49,7 @@ def main():
|
|
45 |
"์์ฐํ๊ฒฝ": nature_df,
|
46 |
"์ธ๊ตฌ๋ฐ์ง๋": population_df
|
47 |
}
|
48 |
-
|
49 |
if datasets:
|
50 |
combined_data = pd.concat([dataset_mapping[dataset_name] for dataset_name in datasets])
|
51 |
|
|
|
25 |
labels = kmeans.labels_
|
26 |
return centroids, labels
|
27 |
|
28 |
+
|
29 |
def main():
|
30 |
st.title("K-means Clustering Simulator")
|
31 |
|
32 |
+
# Global variables declaration
|
33 |
+
global traffic_df, nature_df, population_df
|
34 |
+
|
35 |
if st.button("Initialize Datasets"):
|
36 |
traffic_data = np.random.uniform(0, 100, (num_samples * len(traffic_centers), 2))
|
37 |
nature_data = np.random.uniform(0, 100, (num_samples * len(nature_centers), 2))
|
|
|
49 |
"์์ฐํ๊ฒฝ": nature_df,
|
50 |
"์ธ๊ตฌ๋ฐ์ง๋": population_df
|
51 |
}
|
52 |
+
|
53 |
if datasets:
|
54 |
combined_data = pd.concat([dataset_mapping[dataset_name] for dataset_name in datasets])
|
55 |
|