Spaces:
Configuration error
Configuration error
import torch | |
import math | |
import comfy.supported_models_base | |
import comfy.latent_formats | |
import comfy.model_patcher | |
import comfy.model_base | |
import comfy.utils | |
import comfy.conds | |
from comfy import model_management | |
from .diffusers_convert import convert_state_dict | |
# checkpointbf | |
class EXM_PixArt(comfy.supported_models_base.BASE): | |
unet_config = {} | |
unet_extra_config = {} | |
latent_format = comfy.latent_formats.SD15 | |
def __init__(self, model_conf): | |
self.model_target = model_conf.get("target") | |
self.unet_config = model_conf.get("unet_config", {}) | |
self.sampling_settings = model_conf.get("sampling_settings", {}) | |
self.latent_format = self.latent_format() | |
# UNET is handled by extension | |
self.unet_config["disable_unet_model_creation"] = True | |
def model_type(self, state_dict, prefix=""): | |
return comfy.model_base.ModelType.EPS | |
class EXM_PixArt_Model(comfy.model_base.BaseModel): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
def extra_conds(self, **kwargs): | |
out = super().extra_conds(**kwargs) | |
img_hw = kwargs.get("img_hw", None) | |
if img_hw is not None: | |
out["img_hw"] = comfy.conds.CONDRegular(torch.tensor(img_hw)) | |
aspect_ratio = kwargs.get("aspect_ratio", None) | |
if aspect_ratio is not None: | |
out["aspect_ratio"] = comfy.conds.CONDRegular(torch.tensor(aspect_ratio)) | |
cn_hint = kwargs.get("cn_hint", None) | |
if cn_hint is not None: | |
out["cn_hint"] = comfy.conds.CONDRegular(cn_hint) | |
return out | |
def load_pixart(model_path, model_conf=None): | |
state_dict = comfy.utils.load_torch_file(model_path) | |
state_dict = state_dict.get("model", state_dict) | |
# prefix | |
for prefix in ["model.diffusion_model.", ]: | |
if any(True for x in state_dict if x.startswith(prefix)): | |
state_dict = {k[len(prefix):]: v for k, v in state_dict.items()} | |
# diffusers | |
if "adaln_single.linear.weight" in state_dict: | |
state_dict = convert_state_dict(state_dict) # Diffusers | |
# guess auto config | |
if model_conf is None: | |
model_conf = guess_pixart_config(state_dict) | |
parameters = comfy.utils.calculate_parameters(state_dict) | |
unet_dtype = model_management.unet_dtype(model_params=parameters) | |
load_device = comfy.model_management.get_torch_device() | |
offload_device = comfy.model_management.unet_offload_device() | |
# ignore fp8/etc and use directly for now | |
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device) | |
if manual_cast_dtype: | |
print(f"PixArt: falling back to {manual_cast_dtype}") | |
unet_dtype = manual_cast_dtype | |
model_conf = EXM_PixArt(model_conf) # convert to object | |
model = EXM_PixArt_Model( # same as comfy.model_base.BaseModel | |
model_conf, | |
model_type=comfy.model_base.ModelType.EPS, | |
device=model_management.get_torch_device() | |
) | |
if model_conf.model_target == "PixArtMS": | |
from .models.PixArtMS import PixArtMS | |
model.diffusion_model = PixArtMS(**model_conf.unet_config) | |
elif model_conf.model_target == "PixArt": | |
from .models.PixArt import PixArt | |
model.diffusion_model = PixArt(**model_conf.unet_config) | |
elif model_conf.model_target == "PixArtMSSigma": | |
from .models.PixArtMS import PixArtMS | |
model.diffusion_model = PixArtMS(**model_conf.unet_config) | |
model.latent_format = comfy.latent_formats.SDXL() | |
elif model_conf.model_target == "ControlPixArtMSHalf": | |
from .models.PixArtMS import PixArtMS | |
from .models.pixart_controlnet import ControlPixArtMSHalf | |
model.diffusion_model = PixArtMS(**model_conf.unet_config) | |
model.diffusion_model = ControlPixArtMSHalf(model.diffusion_model) | |
elif model_conf.model_target == "ControlPixArtHalf": | |
from .models.PixArt import PixArt | |
from .models.pixart_controlnet import ControlPixArtHalf | |
model.diffusion_model = PixArt(**model_conf.unet_config) | |
model.diffusion_model = ControlPixArtHalf(model.diffusion_model) | |
else: | |
raise NotImplementedError(f"Unknown model target '{model_conf.model_target}'") | |
m, u = model.diffusion_model.load_state_dict(state_dict, strict=False) | |
if len(m) > 0: print("Missing UNET keys", m) | |
if len(u) > 0: print("Leftover UNET keys", u) | |
model.diffusion_model.dtype = unet_dtype | |
model.diffusion_model.eval() | |
model.diffusion_model.to(unet_dtype) | |
model_patcher = comfy.model_patcher.ModelPatcher( | |
model, | |
load_device=load_device, | |
offload_device=offload_device, | |
) | |
return model_patcher | |
def guess_pixart_config(sd): | |
""" | |
Guess config based on converted state dict. | |
""" | |
# Shared settings based on DiT_XL_2 - could be enumerated | |
config = { | |
"num_heads": 16, # get from attention | |
"patch_size": 2, # final layer I guess? | |
"hidden_size": 1152, # pos_embed.shape[2] | |
} | |
config["depth"] = sum([key.endswith(".attn.proj.weight") for key in sd.keys()]) or 28 | |
try: | |
# this is not present in the diffusers version for sigma? | |
config["model_max_length"] = sd["y_embedder.y_embedding"].shape[0] | |
except KeyError: | |
# need better logic to guess this | |
config["model_max_length"] = 300 | |
if "pos_embed" in sd: | |
config["input_size"] = int(math.sqrt(sd["pos_embed"].shape[1])) * config["patch_size"] | |
config["pe_interpolation"] = config["input_size"] // (512 // 8) # dumb guess | |
target_arch = "PixArtMS" | |
if config["model_max_length"] == 300: | |
# Sigma | |
target_arch = "PixArtMSSigma" | |
config["micro_condition"] = False | |
if "input_size" not in config: | |
# The diffusers weights for 1K/2K are exactly the same...? | |
# replace patch embed logic with HyDiT? | |
print(f"PixArt: diffusers weights - 2K model will be broken, use manual loading!") | |
config["input_size"] = 1024 // 8 | |
else: | |
# Alpha | |
if "csize_embedder.mlp.0.weight" in sd: | |
# MS (microconds) | |
target_arch = "PixArtMS" | |
config["micro_condition"] = True | |
if "input_size" not in config: | |
config["input_size"] = 1024 // 8 | |
config["pe_interpolation"] = 2 | |
else: | |
# PixArt | |
target_arch = "PixArt" | |
if "input_size" not in config: | |
config["input_size"] = 512 // 8 | |
config["pe_interpolation"] = 1 | |
print("PixArt guessed config:", target_arch, config) | |
return { | |
"target": target_arch, | |
"unet_config": config, | |
"sampling_settings": { | |
"beta_schedule": "sqrt_linear", | |
"linear_start": 0.0001, | |
"linear_end": 0.02, | |
"timesteps": 1000, | |
} | |
} | |
# lora | |
class EXM_PixArt_ModelPatcher(comfy.model_patcher.ModelPatcher): | |
def calculate_weight(self, patches, weight, key): | |
""" | |
This is almost the same as the comfy function, but stripped down to just the LoRA patch code. | |
The problem with the original code is the q/k/v keys being combined into one for the attention. | |
In the diffusers code, they're treated as separate keys, but in the reference code they're recombined (q+kv|qkv). | |
This means, for example, that the [1152,1152] weights become [3456,1152] in the state dict. | |
The issue with this is that the LoRA weights are [128,1152],[1152,128] and become [384,1162],[3456,128] instead. | |
This is the best thing I could think of that would fix that, but it's very fragile. | |
- Check key shape to determine if it needs the fallback logic | |
- Cut the input into parts based on the shape (undoing the torch.cat) | |
- Do the matrix multiplication logic | |
- Recombine them to match the expected shape | |
""" | |
for p in patches: | |
alpha = p[0] | |
v = p[1] | |
strength_model = p[2] | |
if strength_model != 1.0: | |
weight *= strength_model | |
if isinstance(v, list): | |
v = (self.calculate_weight(v[1:], v[0].clone(), key),) | |
if len(v) == 2: | |
patch_type = v[0] | |
v = v[1] | |
if patch_type == "lora": | |
mat1 = comfy.model_management.cast_to_device(v[0], weight.device, torch.float32) | |
mat2 = comfy.model_management.cast_to_device(v[1], weight.device, torch.float32) | |
if v[2] is not None: | |
alpha *= v[2] / mat2.shape[0] | |
try: | |
mat1 = mat1.flatten(start_dim=1) | |
mat2 = mat2.flatten(start_dim=1) | |
ch1 = mat1.shape[0] // mat2.shape[1] | |
ch2 = mat2.shape[0] // mat1.shape[1] | |
### Fallback logic for shape mismatch ### | |
if mat1.shape[0] != mat2.shape[1] and ch1 == ch2 and (mat1.shape[0] / mat2.shape[1]) % 1 == 0: | |
mat1 = mat1.chunk(ch1, dim=0) | |
mat2 = mat2.chunk(ch1, dim=0) | |
weight += torch.cat( | |
[alpha * torch.mm(mat1[x], mat2[x]) for x in range(ch1)], | |
dim=0, | |
).reshape(weight.shape).type(weight.dtype) | |
else: | |
weight += (alpha * torch.mm(mat1, mat2)).reshape(weight.shape).type(weight.dtype) | |
except Exception as e: | |
print("ERROR", key, e) | |
return weight | |
def clone(self): | |
n = EXM_PixArt_ModelPatcher(self.model, self.load_device, self.offload_device, self.size, self.current_device, | |
weight_inplace_update=self.weight_inplace_update) | |
n.patches = {} | |
for k in self.patches: | |
n.patches[k] = self.patches[k][:] | |
n.object_patches = self.object_patches.copy() | |
n.model_options = copy.deepcopy(self.model_options) | |
n.model_keys = self.model_keys | |
return n | |
def replace_model_patcher(model): | |
n = EXM_PixArt_ModelPatcher( | |
model=model.model, | |
size=model.size, | |
load_device=model.load_device, | |
offload_device=model.offload_device, | |
current_device=model.current_device, | |
weight_inplace_update=model.weight_inplace_update, | |
) | |
n.patches = {} | |
for k in model.patches: | |
n.patches[k] = model.patches[k][:] | |
n.object_patches = model.object_patches.copy() | |
n.model_options = copy.deepcopy(model.model_options) | |
return n | |
def find_peft_alpha(path): | |
def load_json(json_path): | |
with open(json_path) as f: | |
data = json.load(f) | |
alpha = data.get("lora_alpha") | |
alpha = alpha or data.get("alpha") | |
if not alpha: | |
print(" Found config but `lora_alpha` is missing!") | |
else: | |
print(f" Found config at {json_path} [alpha:{alpha}]") | |
return alpha | |
# For some weird reason peft doesn't include the alpha in the actual model | |
print("PixArt: Warning! This is a PEFT LoRA. Trying to find config...") | |
files = [ | |
f"{os.path.splitext(path)[0]}.json", | |
f"{os.path.splitext(path)[0]}.config.json", | |
os.path.join(os.path.dirname(path), "adapter_config.json"), | |
] | |
for file in files: | |
if os.path.isfile(file): | |
return load_json(file) | |
print(" Missing config/alpha! assuming alpha of 8. Consider converting it/adding a config json to it.") | |
return 8.0 | |
def load_pixart_lora(model, lora, lora_path, strength): | |
k_back = lambda x: x.replace(".lora_up.weight", "") | |
# need to convert the actual weights for this to work. | |
if any(True for x in lora.keys() if x.endswith("adaln_single.linear.lora_A.weight")): | |
lora = convert_lora_state_dict(lora, peft=True) | |
alpha = find_peft_alpha(lora_path) | |
lora.update({f"{k_back(x)}.alpha": torch.tensor(alpha) for x in lora.keys() if "lora_up" in x}) | |
else: # OneTrainer | |
lora = convert_lora_state_dict(lora, peft=False) | |
key_map = {k_back(x): f"diffusion_model.{k_back(x)}.weight" for x in lora.keys() if "lora_up" in x} # fake | |
loaded = comfy.lora.load_lora(lora, key_map) | |
if model is not None: | |
# switch to custom model patcher when using LoRAs | |
if isinstance(model, EXM_PixArt_ModelPatcher): | |
new_modelpatcher = model.clone() | |
else: | |
new_modelpatcher = replace_model_patcher(model) | |
k = new_modelpatcher.add_patches(loaded, strength) | |
else: | |
k = () | |
new_modelpatcher = None | |
k = set(k) | |
for x in loaded: | |
if (x not in k): | |
print("NOT LOADED", x) | |
return new_modelpatcher |