JasonSmithSO's picture
Upload 578 files
8866644 verified
from functools import partial
from abc import abstractmethod
import torch
import torch.nn as nn
from einops import rearrange
import torch.nn.functional as F
from ...models.utils_diffusion import timestep_embedding
from ...common import checkpoint
from ...basics import (
zero_module,
conv_nd,
linear,
avg_pool_nd,
normalization
)
from ...modules.attention import SpatialTransformer, TemporalTransformer
import comfy.ops
import logging
ops = comfy.ops.disable_weight_init
class TimestepBlock(nn.Module):
"""
Any module where forward() takes timestep embeddings as a second argument.
"""
@abstractmethod
def forward(self, x, emb):
"""
Apply the module to `x` given `emb` timestep embeddings.
"""
#This is needed because accelerate makes a copy of transformer_options which breaks "transformer_index"
def forward_timestep_embed(ts, x, emb, context=None, batch_size=None, transformer_options={}):
for layer in ts:
if isinstance(layer, TimestepBlock):
x = layer(x, emb, batch_size=batch_size)
elif isinstance(layer, SpatialTransformer):
x = layer(x, context)
if "transformer_index" in transformer_options:
transformer_options["transformer_index"] += 1
elif isinstance(layer, TemporalTransformer):
x = rearrange(x, '(b f) c h w -> b c f h w', b=batch_size)
x = layer(x, context)
if "transformer_index" in transformer_options:
transformer_options["transformer_index"] += 1
x = rearrange(x, 'b c f h w -> (b f) c h w')
else:
x = layer(x)
return x
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
"""
A sequential module that passes timestep embeddings to the children that
support it as an extra input.
"""
def forward(self, *args, **kwargs):
return forward_timestep_embed(self, *args, **kwargs)
class Downsample(nn.Module):
"""
A downsampling layer with an optional convolution.
:param channels: channels in the inputs and outputs.
:param use_conv: a bool determining if a convolution is applied.
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
downsampling occurs in the inner-two dimensions.
"""
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None, operations=ops):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.dims = dims
stride = 2 if dims != 3 else (1, 2, 2)
if use_conv:
self.op = operations.conv_nd(
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
)
else:
assert self.channels == self.out_channels
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
def forward(self, x):
assert x.shape[1] == self.channels
return self.op(x)
class Upsample(nn.Module):
"""
An upsampling layer with an optional convolution.
:param channels: channels in the inputs and outputs.
:param use_conv: a bool determining if a convolution is applied.
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
upsampling occurs in the inner-two dimensions.
"""
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None, operations=ops):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.dims = dims
if use_conv:
self.conv = operations.conv_nd(dims, self.channels, self.out_channels, 3, padding=padding, dtype=dtype, device=device)
def forward(self, x):
assert x.shape[1] == self.channels
if self.dims == 3:
x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode='nearest')
else:
x = F.interpolate(x, scale_factor=2, mode='nearest')
if self.use_conv:
x = self.conv(x)
return x
class ResBlock(TimestepBlock):
"""
A residual block that can optionally change the number of channels.
:param channels: the number of input channels.
:param emb_channels: the number of timestep embedding channels.
:param dropout: the rate of dropout.
:param out_channels: if specified, the number of out channels.
:param use_conv: if True and out_channels is specified, use a spatial
convolution instead of a smaller 1x1 convolution to change the
channels in the skip connection.
:param dims: determines if the signal is 1D, 2D, or 3D.
:param up: if True, use this block for upsampling.
:param down: if True, use this block for downsampling.
:param use_temporal_conv: if True, use the temporal convolution.
:param use_image_dataset: if True, the temporal parameters will not be optimized.
"""
def __init__(
self,
channels,
emb_channels,
dropout,
out_channels=None,
use_scale_shift_norm=False,
dims=2,
use_checkpoint=False,
use_conv=False,
up=False,
down=False,
kernel_size=3,
use_temporal_conv=False,
tempspatial_aware=False,
dtype=None,
device=None,
operations=ops
):
super().__init__()
self.channels = channels
self.emb_channels = emb_channels
self.dropout = dropout
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.use_checkpoint = use_checkpoint
self.use_scale_shift_norm = use_scale_shift_norm
self.use_temporal_conv = use_temporal_conv
if isinstance(kernel_size, list):
padding =[k // 2 for k in kernel_size]
else:
padding = kernel_size // 2
# operations used in normalization function
self.in_layers = nn.Sequential(
normalization(channels, dtype=dtype, device=device),
nn.SiLU(),
operations.conv_nd(dims, channels, self.out_channels, 3, padding=1, dtype=dtype, device=device),
)
self.updown = up or down
if up:
self.h_upd = Upsample(channels, False, dims, dtype=dtype, device=device)
self.x_upd = Upsample(channels, False, dims, dtype=dtype, device=device)
elif down:
self.h_upd = Downsample(channels, False, dims, dtype=dtype, device=device)
self.x_upd = Downsample(channels, False, dims, dtype=dtype, device=device)
else:
self.h_upd = self.x_upd = nn.Identity()
self.emb_layers = nn.Sequential(
nn.SiLU(),
operations.Linear(
emb_channels,
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
dtype=dtype,
device=device
),
)
self.out_layers = nn.Sequential(
normalization(self.out_channels, dtype=dtype, device=device),
nn.SiLU(),
nn.Dropout(p=dropout),
zero_module(operations.Conv2d(self.out_channels, self.out_channels, 3, padding=1, dtype=dtype, device=device)),
)
if self.out_channels == channels:
self.skip_connection = nn.Identity()
elif use_conv:
self.skip_connection = operations.conv_nd(dims, channels, self.out_channels, 3, padding=1, dtype=dtype, device=device)
else:
self.skip_connection = operations.conv_nd(dims, channels, self.out_channels, 1, dtype=dtype, device=device)
if self.use_temporal_conv:
self.temopral_conv = TemporalConvBlock(
self.out_channels,
self.out_channels,
dropout=0.1,
spatial_aware=tempspatial_aware,
dtype=dtype,
device=device
)
def forward(self, x, emb, batch_size=None):
"""
Apply the block to a Tensor, conditioned on a timestep embedding.
:param x: an [N x C x ...] Tensor of features.
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
:return: an [N x C x ...] Tensor of outputs.
"""
input_tuple = (x, emb)
if batch_size:
forward_batchsize = partial(self._forward, batch_size=batch_size)
return checkpoint(forward_batchsize, input_tuple, self.parameters(), self.use_checkpoint)
return checkpoint(self._forward, input_tuple, self.parameters(), self.use_checkpoint)
def _forward(self, x, emb, batch_size=None):
if self.updown:
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
h = in_rest(x)
h = self.h_upd(h)
x = self.x_upd(x)
h = in_conv(h)
else:
h = self.in_layers(x)
emb_out = self.emb_layers(emb).type(h.dtype)
while len(emb_out.shape) < len(h.shape):
emb_out = emb_out[..., None]
if self.use_scale_shift_norm:
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
scale, shift = torch.chunk(emb_out, 2, dim=1)
h = out_norm(h) * (1 + scale) + shift
h = out_rest(h)
else:
h = h + emb_out
h = self.out_layers(h)
h = self.skip_connection(x) + h
if self.use_temporal_conv and batch_size:
h = rearrange(h, '(b t) c h w -> b c t h w', b=batch_size)
h = self.temopral_conv(h)
h = rearrange(h, 'b c t h w -> (b t) c h w')
return h
class TemporalConvBlock(nn.Module):
"""
Adapted from modelscope: https://github.com/modelscope/modelscope/blob/master/modelscope/models/multi_modal/video_synthesis/unet_sd.py
"""
def __init__(
self,
in_channels,
out_channels=None,
dropout=0.0,
spatial_aware=False,
dtype=None,
device=None,
operations=ops
):
super(TemporalConvBlock, self).__init__()
if out_channels is None:
out_channels = in_channels
self.in_channels = in_channels
self.out_channels = out_channels
th_kernel_shape = (3, 1, 1) if not spatial_aware else (3, 3, 1)
th_padding_shape = (1, 0, 0) if not spatial_aware else (1, 1, 0)
tw_kernel_shape = (3, 1, 1) if not spatial_aware else (3, 1, 3)
tw_padding_shape = (1, 0, 0) if not spatial_aware else (1, 0, 1)
# conv layers
self.conv1 = nn.Sequential(
operations.GroupNorm(32, in_channels, device=device, dtype=dtype), nn.SiLU(),
operations.Conv3d(in_channels, out_channels, th_kernel_shape, padding=th_padding_shape, device=device, dtype=dtype))
self.conv2 = nn.Sequential(
operations.GroupNorm(32, out_channels, device=device, dtype=dtype), nn.SiLU(), nn.Dropout(dropout),
operations.Conv3d(out_channels, in_channels, tw_kernel_shape, padding=tw_padding_shape, device=device, dtype=dtype))
self.conv3 = nn.Sequential(
operations.GroupNorm(32, out_channels, device=device, dtype=dtype), nn.SiLU(), nn.Dropout(dropout),
operations.Conv3d(out_channels, in_channels, th_kernel_shape, padding=th_padding_shape, device=device, dtype=dtype))
self.conv4 = nn.Sequential(
operations.GroupNorm(32, out_channels, device=device, dtype=dtype), nn.SiLU(), nn.Dropout(dropout),
operations.Conv3d(out_channels, in_channels, tw_kernel_shape, padding=tw_padding_shape, device=device, dtype=dtype))
# zero out the last layer params,so the conv block is identity
nn.init.zeros_(self.conv4[-1].weight)
nn.init.zeros_(self.conv4[-1].bias)
def forward(self, x):
identity = x
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.conv4(x)
return identity + x
def context_processor(context, t, img_emb=None, temporal_size=16, concat_only=False, disable_concat=False):
if disable_concat:
return context
## repeat t times for context [(b t) 77 768] & time embedding
## check if we use per-frame image conditioning
if img_emb is not None:
context = torch.cat([context, img_emb.to(context.device, context.dtype)], dim=1)
if concat_only:
return context
b, l_context, _ = context.shape
if l_context == 77 + t * temporal_size:
context_text, context_img = context[:,:77,:], context[:,77:,:]
context_text = context_text.repeat_interleave(repeats=t, dim=0)
context_img = rearrange(context_img, 'b (t l) c -> (b t) l c', t=t)
context = torch.cat([context_text, context_img], dim=1)
else:
context = context.repeat_interleave(repeats=t, dim=0)
return context
def apply_control(h, control, name, cond_idx=None):
if control is not None and name in control and len(control[name]) > 0:
frames = h.shape[0]
ctrl = control[name].pop()
if ctrl is not None:
try:
if cond_idx is not None and ctrl.shape[0] > frames:
ctrl_frames_list = list(range(ctrl.shape[0]))
ctrl_frames = len(ctrl_frames_list)
idxs = (
ctrl_frames_list[ctrl_frames // 2:] if cond_idx == 0 else \
ctrl_frames_list[:ctrl_frames // 2]
)
ctrl = ctrl[idxs]
h += ctrl
except Exception as e:
if h.shape != ctrl.shape:
logging.warning(
"warning control could not be applied {} {}".format(h.shape, ctrl.shape)
)
logging.warning(e)
return h
class UNetModel(nn.Module):
"""
The full UNet model with attention and timestep embedding.
:param in_channels: in_channels in the input Tensor.
:param model_channels: base channel count for the model.
:param out_channels: channels in the output Tensor.
:param num_res_blocks: number of residual blocks per downsample.
:param attention_resolutions: a collection of downsample rates at which
attention will take place. May be a set, list, or tuple.
For example, if this contains 4, then at 4x downsampling, attention
will be used.
:param dropout: the dropout probability.
:param channel_mult: channel multiplier for each level of the UNet.
:param conv_resample: if True, use learned convolutions for upsampling and
downsampling.
:param dims: determines if the signal is 1D, 2D, or 3D.
:param num_classes: if specified (as an int), then this model will be
class-conditional with `num_classes` classes.
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
:param num_heads: the number of attention heads in each attention layer.
:param num_heads_channels: if specified, ignore num_heads and instead use
a fixed channel width per attention head.
:param num_heads_upsample: works with num_heads to set a different number
of heads for upsampling. Deprecated.
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
:param resblock_updown: use residual blocks for up/downsampling.
:param use_new_attention_order: use a different attention pattern for potentially
increased efficiency.
"""
def __init__(self,
in_channels,
model_channels,
out_channels,
num_res_blocks,
attention_resolutions,
dropout=0.0,
channel_mult=(1, 2, 4, 8),
conv_resample=True,
dims=2,
context_dim=None,
use_scale_shift_norm=False,
resblock_updown=False,
num_heads=-1,
num_head_channels=-1,
transformer_depth=1,
use_linear=False,
use_checkpoint=False,
temporal_conv=False,
tempspatial_aware=False,
temporal_attention=True,
use_relative_position=True,
use_causal_attention=False,
temporal_length=None,
use_fp16=False,
addition_attention=False,
temporal_selfatt_only=True,
image_cross_attention=False,
image_cross_attention_scale_learnable=False,
default_fs=4,
fs_condition=False,
device=None,
dtype=torch.float16,
operations=ops
):
super(UNetModel, self).__init__()
if num_heads == -1:
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
if num_head_channels == -1:
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
self.in_channels = in_channels
self.model_channels = model_channels
self.out_channels = out_channels
self.num_res_blocks = num_res_blocks
self.attention_resolutions = attention_resolutions
self.dropout = dropout
self.channel_mult = channel_mult
self.conv_resample = conv_resample
self.temporal_attention = temporal_attention
time_embed_dim = model_channels * 4
self.use_checkpoint = use_checkpoint
temporal_self_att_only = True
self.addition_attention = addition_attention
self.temporal_length = temporal_length
self.image_cross_attention = image_cross_attention
self.image_cross_attention_scale_learnable = image_cross_attention_scale_learnable
self.default_fs = default_fs
self.fs_condition = fs_condition
self.device = device
#self.dtype = dtype
self.dtype = torch.float32
## Time embedding blocks
self.time_embed = nn.Sequential(
linear(model_channels, time_embed_dim, device=device, dtype=self.dtype),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim, device=device, dtype=self.dtype),
)
if fs_condition:
self.fps_embedding = nn.Sequential(
linear(model_channels, time_embed_dim, device=device, dtype=self.dtype),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim, device=device, dtype=self.dtype),
)
nn.init.zeros_(self.fps_embedding[-1].weight)
nn.init.zeros_(self.fps_embedding[-1].bias)
## Input Block
self.input_blocks = nn.ModuleList(
[
TimestepEmbedSequential(
operations.conv_nd(
dims,
in_channels,
model_channels,
3,
padding=1,
device=device,
dtype=self.dtype
))
]
)
if self.addition_attention:
self.init_attn=TimestepEmbedSequential(
TemporalTransformer(
model_channels,
n_heads=8,
d_head=num_head_channels,
depth=transformer_depth,
context_dim=context_dim,
use_checkpoint=use_checkpoint, only_self_att=temporal_selfatt_only,
causal_attention=False, relative_position=use_relative_position,
temporal_length=temporal_length,
device=device,
dtype=self.dtype
))
input_block_chans = [model_channels]
ch = model_channels
ds = 1
for level, mult in enumerate(channel_mult):
for _ in range(num_res_blocks):
layers = [
ResBlock(ch, time_embed_dim, dropout,
out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware,
use_temporal_conv=temporal_conv,
device=device,
dtype=self.dtype
)
]
ch = mult * model_channels
if ds in attention_resolutions:
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
layers.append(
SpatialTransformer(ch, num_heads, dim_head,
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
use_checkpoint=use_checkpoint, disable_self_attn=False,
video_length=temporal_length, image_cross_attention=self.image_cross_attention,
image_cross_attention_scale_learnable=self.image_cross_attention_scale_learnable,
device=device,
dtype=self.dtype
)
)
if self.temporal_attention:
layers.append(
TemporalTransformer(ch, num_heads, dim_head,
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
use_checkpoint=use_checkpoint, only_self_att=temporal_self_att_only,
causal_attention=use_causal_attention, relative_position=use_relative_position,
temporal_length=temporal_length,
device=device,
dtype=self.dtype
)
)
self.input_blocks.append(TimestepEmbedSequential(*layers))
input_block_chans.append(ch)
if level != len(channel_mult) - 1:
out_ch = ch
self.input_blocks.append(
TimestepEmbedSequential(
ResBlock(ch, time_embed_dim, dropout,
out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
down=True,
device=device,
dtype=self.dtype
)
if resblock_updown
else Downsample(
ch,
conv_resample,
dims=dims,
out_channels=out_ch,
device=device,
dtype=self.dtype
)
)
)
ch = out_ch
input_block_chans.append(ch)
ds *= 2
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
layers = [
ResBlock(ch, time_embed_dim, dropout,
dims=dims, use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware,
use_temporal_conv=temporal_conv,
device=device,
dtype=self.dtype
),
SpatialTransformer(ch, num_heads, dim_head,
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
use_checkpoint=use_checkpoint, disable_self_attn=False, video_length=temporal_length,
image_cross_attention=self.image_cross_attention,image_cross_attention_scale_learnable=self.image_cross_attention_scale_learnable,
device=device,
dtype=self.dtype
)
]
if self.temporal_attention:
layers.append(
TemporalTransformer(ch, num_heads, dim_head,
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
use_checkpoint=use_checkpoint, only_self_att=temporal_self_att_only,
causal_attention=use_causal_attention, relative_position=use_relative_position,
temporal_length=temporal_length,
device=device,
dtype=self.dtype
)
)
layers.append(
ResBlock(ch, time_embed_dim, dropout,
dims=dims, use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware,
use_temporal_conv=temporal_conv,
device=device,
dtype=self.dtype
)
)
## Middle Block
self.middle_block = TimestepEmbedSequential(*layers)
## Output Block
self.output_blocks = nn.ModuleList([])
for level, mult in list(enumerate(channel_mult))[::-1]:
for i in range(num_res_blocks + 1):
ich = input_block_chans.pop()
layers = [
ResBlock(ch + ich, time_embed_dim, dropout,
out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware,
use_temporal_conv=temporal_conv,
device=device,
dtype=self.dtype
)
]
ch = model_channels * mult
if ds in attention_resolutions:
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
layers.append(
SpatialTransformer(ch, num_heads, dim_head,
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
use_checkpoint=use_checkpoint, disable_self_attn=False, video_length=temporal_length,
image_cross_attention=self.image_cross_attention,image_cross_attention_scale_learnable=self.image_cross_attention_scale_learnable,
device=device,
dtype=self.dtype
)
)
if self.temporal_attention:
layers.append(
TemporalTransformer(ch, num_heads, dim_head,
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
use_checkpoint=use_checkpoint, only_self_att=temporal_self_att_only,
causal_attention=use_causal_attention, relative_position=use_relative_position,
temporal_length=temporal_length,
device=device,
dtype=self.dtype
)
)
if level and i == num_res_blocks:
out_ch = ch
layers.append(
ResBlock(ch, time_embed_dim, dropout,
out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
up=True,
device=device,
dtype=self.dtype
)
if resblock_updown
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
)
ds //= 2
self.output_blocks.append(TimestepEmbedSequential(*layers))
self.out = nn.Sequential(
normalization(ch, device=device, dtype=self.dtype),
nn.SiLU(),
zero_module(
operations.conv_nd(
dims,
model_channels,
out_channels,
3,
padding=1,
device=device,
dtype=self.dtype
)
),
)
# TODO Add Transformer options to leverage the usage of patches.
def forward(
self,
x,
timesteps,
context=None,
context_in=None,
cc_concat=None,
num_video_frames=16,
features_adapter=None,
fs=None,
img_emb=None,
control=None,
transformer_options={},
cond_idx=None,
**kwargs
):
if any([fs is None, img_emb is None, cc_concat is None]):
raise ValueError("One or more of the required inputs for UNet Forward is None.")
cond_idx = transformer_options.get("cond_idx", None)
transformer_options['original_shape'] = list(x.shape)
transformer_options['transformer_index'] = 0
transformer_patches = transformer_options.get("patches", {})
# In ComfyUI, the frames are always with the batch, so we deconstruct it here.
# This is mandatory as this is a video based model.
# We usually denote "f" as frames, but will use "t" (time) to be consistent with DynamiCrafter.
b,_,t,_,_ = x.shape
context = context_in
cc_concat = cc_concat.to(x.device, x.dtype)
x = torch.cat([x, cc_concat], dim=1)
fs = fs.to(x.device, x.dtype)
timestep = timesteps
context = context_processor(context, num_video_frames, img_emb=img_emb)
t_emb = timestep_embedding(timestep, self.model_channels, repeat_only=False, dtype=self.dtype)
emb = self.time_embed(t_emb)
emb = emb.repeat_interleave(repeats=t, dim=0)
## always in shape (b t) c h w, except for temporal layer
x = rearrange(x, 'b c t h w -> (b t) c h w')
## combine emb
if self.fs_condition:
if fs is None:
fs = torch.tensor(
[self.default_fs] * b, dtype=torch.long, device=x.device)
fs_emb = timestep_embedding(fs, self.model_channels, repeat_only=False, dtype=self.dtype).type(x.dtype)
fs_embed = self.fps_embedding(fs_emb)
fs_embed = fs_embed.repeat_interleave(repeats=t, dim=0)
emb = emb + fs_embed
h = x.type(self.dtype)
adapter_idx = 0
hs = []
for id, module in enumerate(self.input_blocks):
transformer_options["block"] = ("input", id)
#h = module(h, emb, context=context, batch_size=b)
h = forward_timestep_embed(
module,
h,
emb,
context=context,
batch_size=b,
transformer_options=transformer_options
)
h = apply_control(h, control, 'input', cond_idx)
if "input_block_patch" in transformer_patches:
patch = transformer_patches["input_block_patch"]
for p in patch:
h = p(h, transformer_options)
if id ==0 and self.addition_attention:
h = forward_timestep_embed(
self.init_attn,
h,
emb,
context=context,
batch_size=b,
transformer_options=transformer_options
)
## plug-in adapter features
if ((id+1)%3 == 0) and features_adapter is not None:
h = h + features_adapter[adapter_idx]
adapter_idx += 1
hs.append(h)
if "input_block_patch_after_skip" in transformer_patches:
patch = transformer_patches["input_block_patch_after_skip"]
for p in patch:
h = p(h, transformer_options)
if features_adapter is not None:
assert len(features_adapter)==adapter_idx, 'Wrong features_adapter'
transformer_options["block"] = ("middle", 0)
h = forward_timestep_embed(
self.middle_block,
h,
emb,
context=context,
batch_size=b,
transformer_options=transformer_options
)
h = apply_control(h, control, 'middle', cond_idx)
for id, module in enumerate(self.output_blocks):
transformer_options["block"] = ("output", id)
hsp = hs.pop()
hsp = apply_control(hsp, control, 'output', cond_idx)
if "output_block_patch" in transformer_patches:
patch = transformer_patches["output_block_patch"]
for p in patch:
h, hsp = p(h, hsp, transformer_options)
h = torch.cat([h, hsp], dim=1)
del hsp
h = forward_timestep_embed(
module,
h,
emb,
context=context,
batch_size=b,
transformer_options=transformer_options
)
h = h.type(x.dtype)
h = self.out(h)
# We output with the tensor unfolded framewise, then reshape them to batched using ComfyUI nodes.
h = rearrange(h, '(b t) c h w -> b c t h w', t=num_video_frames)
return h