JasonSmithSO's picture
Upload 777 files
0034848 verified
from custom_controlnet_aux.diffusion_edge.model import DiffusionEdge, prepare_args
import numpy as np
import torch
from einops import rearrange
from PIL import Image
from custom_controlnet_aux.util import HWC3, common_input_validate, resize_image_with_pad, custom_hf_download, DIFFUSION_EDGE_MODEL_NAME
class DiffusionEdgeDetector:
def __init__(self, model):
self.model = model
self.device = "cpu"
@classmethod
def from_pretrained(cls, pretrained_model_or_path=DIFFUSION_EDGE_MODEL_NAME, filename="diffusion_edge_indoor.pt"):
model_path = custom_hf_download(pretrained_model_or_path, filename)
model = DiffusionEdge(prepare_args(model_path))
return cls(model)
def to(self, device):
self.model.to(device)
self.device = device
return self
def __call__(self, input_image, detect_resolution=512, patch_batch_size=8, output_type=None, upscale_method="INTER_CUBIC", **kwargs):
input_image, output_type = common_input_validate(input_image, output_type, **kwargs)
input_image, remove_pad = resize_image_with_pad(input_image, detect_resolution, upscale_method)
with torch.no_grad():
input_image = rearrange(torch.from_numpy(input_image), "h w c -> 1 c h w")
input_image = input_image.float() / 255.
line = self.model(input_image, patch_batch_size)
line = rearrange(line, "1 c h w -> h w c")
detected_map = line.cpu().numpy().__mul__(255.).astype(np.uint8)
detected_map = remove_pad(HWC3(detected_map))
if output_type == "pil":
detected_map = Image.fromarray(detected_map)
return detected_map