Spaces:
Configuration error
Configuration error
from custom_controlnet_aux.diffusion_edge.model import DiffusionEdge, prepare_args | |
import numpy as np | |
import torch | |
from einops import rearrange | |
from PIL import Image | |
from custom_controlnet_aux.util import HWC3, common_input_validate, resize_image_with_pad, custom_hf_download, DIFFUSION_EDGE_MODEL_NAME | |
class DiffusionEdgeDetector: | |
def __init__(self, model): | |
self.model = model | |
self.device = "cpu" | |
def from_pretrained(cls, pretrained_model_or_path=DIFFUSION_EDGE_MODEL_NAME, filename="diffusion_edge_indoor.pt"): | |
model_path = custom_hf_download(pretrained_model_or_path, filename) | |
model = DiffusionEdge(prepare_args(model_path)) | |
return cls(model) | |
def to(self, device): | |
self.model.to(device) | |
self.device = device | |
return self | |
def __call__(self, input_image, detect_resolution=512, patch_batch_size=8, output_type=None, upscale_method="INTER_CUBIC", **kwargs): | |
input_image, output_type = common_input_validate(input_image, output_type, **kwargs) | |
input_image, remove_pad = resize_image_with_pad(input_image, detect_resolution, upscale_method) | |
with torch.no_grad(): | |
input_image = rearrange(torch.from_numpy(input_image), "h w c -> 1 c h w") | |
input_image = input_image.float() / 255. | |
line = self.model(input_image, patch_batch_size) | |
line = rearrange(line, "1 c h w -> h w c") | |
detected_map = line.cpu().numpy().__mul__(255.).astype(np.uint8) | |
detected_map = remove_pad(HWC3(detected_map)) | |
if output_type == "pil": | |
detected_map = Image.fromarray(detected_map) | |
return detected_map |