Spaces:
Configuration error
Configuration error
import os | |
import warnings | |
import cv2 | |
import numpy as np | |
import torch | |
from einops import rearrange | |
from PIL import Image | |
from custom_controlnet_aux.util import HWC3, nms, resize_image_with_pad, safe_step,common_input_validate, custom_hf_download, HF_MODEL_NAME | |
from .model import pidinet | |
class PidiNetDetector: | |
def __init__(self, netNetwork): | |
self.netNetwork = netNetwork | |
self.device = "cpu" | |
def from_pretrained(cls, pretrained_model_or_path=HF_MODEL_NAME, filename="table5_pidinet.pth"): | |
model_path = custom_hf_download(pretrained_model_or_path, filename) | |
netNetwork = pidinet() | |
netNetwork.load_state_dict({k.replace('module.', ''): v for k, v in torch.load(model_path)['state_dict'].items()}) | |
netNetwork.eval() | |
return cls(netNetwork) | |
def to(self, device): | |
self.netNetwork.to(device) | |
self.device = device | |
return self | |
def __call__(self, input_image, detect_resolution=512, safe=False, output_type="pil", scribble=False, apply_filter=False, upscale_method="INTER_CUBIC", **kwargs): | |
input_image, output_type = common_input_validate(input_image, output_type, **kwargs) | |
detected_map, remove_pad = resize_image_with_pad(input_image, detect_resolution, upscale_method) | |
detected_map = detected_map[:, :, ::-1].copy() | |
with torch.no_grad(): | |
image_pidi = torch.from_numpy(detected_map).float().to(self.device) | |
image_pidi = image_pidi / 255.0 | |
image_pidi = rearrange(image_pidi, 'h w c -> 1 c h w') | |
edge = self.netNetwork(image_pidi)[-1] | |
edge = edge.cpu().numpy() | |
if apply_filter: | |
edge = edge > 0.5 | |
if safe: | |
edge = safe_step(edge) | |
edge = (edge * 255.0).clip(0, 255).astype(np.uint8) | |
detected_map = edge[0, 0] | |
if scribble: | |
detected_map = nms(detected_map, 127, 3.0) | |
detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0) | |
detected_map[detected_map > 4] = 255 | |
detected_map[detected_map < 255] = 0 | |
detected_map = HWC3(remove_pad(detected_map)) | |
if output_type == "pil": | |
detected_map = Image.fromarray(detected_map) | |
return detected_map | |