Spaces:
Build error
Build error
File size: 16,657 Bytes
311e573 df97230 3f486f6 311e573 781ebc0 3f486f6 311e573 3f486f6 311e573 3f486f6 311e573 3f486f6 311e573 3f486f6 311e573 3f486f6 311e573 3f486f6 311e573 3f486f6 311e573 3f486f6 311e573 3f486f6 311e573 3f486f6 311e573 0c90078 311e573 3f486f6 311e573 cdc95c3 311e573 cdc95c3 311e573 781ebc0 311e573 d4bc620 781ebc0 311e573 c3138dd 781ebc0 4dd55d2 0c63d43 311e573 cdc95c3 311e573 3f486f6 311e573 3f486f6 311e573 3f486f6 311e573 3f486f6 311e573 3f486f6 311e573 3f486f6 311e573 3f486f6 cdc95c3 311e573 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
import os
os.system("pip install streamlit pandas xlsxwriter openpyxl pymongo matplotlib seaborn")
import streamlit as st
import pandas as pd
import xlsxwriter
from io import BytesIO
from collections import defaultdict
import hashlib
import matplotlib.pyplot as plt
import seaborn as sns
# MongoDB Setup
try:
from pymongo import MongoClient
client = MongoClient("mongodb+srv://dhruvmangroliya:[email protected]/BTP_DB?retryWrites=true&w=majority")
db = client['BTP_DB']
results_collection = db['protein_results']
except:
results_collection = None
# Utility Functions
def is_homo_repeat(s):
return all(c == s[0] for c in s)
def hash_sequence(sequence):
return hashlib.md5(sequence.encode()).hexdigest()
@st.cache_data(show_spinner=False)
def fragment_protein_sequence(sequence, max_length=1000):
return [sequence[i:i+max_length] for i in range(0, len(sequence), max_length)]
def find_homorepeats(protein):
n = len(protein)
freq = defaultdict(int)
i = 0
while i < n:
curr = protein[i]
repeat = ""
while i < n and curr == protein[i]:
repeat += protein[i]
i += 1
if len(repeat) > 1:
freq[repeat] += 1
return freq
def find_hetero_amino_acid_repeats(sequence):
repeat_counts = defaultdict(int)
for length in range(2, len(sequence) + 1):
for i in range(len(sequence) - length + 1):
substring = sequence[i:i+length]
repeat_counts[substring] += 1
return {k: v for k, v in repeat_counts.items() if v > 1}
def check_boundary_repeats(fragments, final_repeats, overlap=50):
for i in range(len(fragments) - 1):
left_overlap = fragments[i][-overlap:]
right_overlap = fragments[i + 1][:overlap]
overlap_region = left_overlap + right_overlap
boundary_repeats = find_hetero_amino_acid_repeats(overlap_region)
for substring, count in boundary_repeats.items():
if any(aa in left_overlap for aa in substring) and any(aa in right_overlap for aa in substring):
final_repeats[substring] += count
return final_repeats
def find_new_boundary_repeats(fragments, final_repeats, overlap=50):
new_repeats = defaultdict(int)
for i in range(len(fragments) - 1):
left_overlap = fragments[i][-overlap:]
right_overlap = fragments[i + 1][:overlap]
overlap_region = left_overlap + right_overlap
boundary_repeats = find_hetero_amino_acid_repeats(overlap_region)
for substring, count in boundary_repeats.items():
if any(aa in left_overlap for aa in substring) and any(aa in right_overlap for aa in substring):
if substring not in final_repeats:
new_repeats[substring] += count
return new_repeats
def get_or_process_sequence(sequence, analysis_type, overlap=50):
if results_collection is None:
return {}
hash_input = f"{sequence}_{analysis_type}"
sequence_hash = hash_sequence(hash_input)
cached = results_collection.find_one({"_id": sequence_hash})
if cached:
return cached["repeats"]
fragments = fragment_protein_sequence(sequence)
final_repeats = defaultdict(int)
if analysis_type == "Hetero":
for fragment in fragments:
fragment_repeats = find_hetero_amino_acid_repeats(fragment)
for k, v in fragment_repeats.items():
final_repeats[k] += v
final_repeats = check_boundary_repeats(fragments, final_repeats, overlap)
new_repeats = find_new_boundary_repeats(fragments, final_repeats, overlap)
for k, v in new_repeats.items():
final_repeats[k] += v
final_repeats = {k: v for k, v in final_repeats.items() if not is_homo_repeat(k)}
elif analysis_type == "Homo":
final_repeats = find_homorepeats(sequence)
elif analysis_type == "Both":
hetero_repeats = defaultdict(int)
for fragment in fragments:
fragment_repeats = find_hetero_amino_acid_repeats(fragment)
for k, v in fragment_repeats.items():
hetero_repeats[k] += v
hetero_repeats = check_boundary_repeats(fragments, hetero_repeats, overlap)
new_repeats = find_new_boundary_repeats(fragments, hetero_repeats, overlap)
for k, v in new_repeats.items():
hetero_repeats[k] += v
hetero_repeats = {k: v for k, v in hetero_repeats.items() if not is_homo_repeat(k)}
homo_repeats = find_homorepeats(sequence)
final_repeats = homo_repeats.copy()
for k, v in hetero_repeats.items():
final_repeats[k] += v
results_collection.insert_one({
"_id": sequence_hash,
"sequence": sequence,
"analysis_type": analysis_type,
"repeats": dict(final_repeats)
})
return final_repeats
def process_excel(excel_data, analysis_type):
repeats = set()
sequence_data = []
count = 0
for sheet_name in excel_data.sheet_names:
df = excel_data.parse(sheet_name)
if len(df.columns) < 3:
st.error(f"Error: The sheet '{sheet_name}' must have at least three columns: ID, Protein Name, Sequence")
return None, None
for _, row in df.iterrows():
entry_id = str(row[0])
protein_name = str(row[1])
sequence = str(row[2]).replace('"', '').replace(' ', '').strip()
if not sequence:
continue
count += 1
freq = get_or_process_sequence(sequence, analysis_type)
sequence_data.append((entry_id, protein_name, freq))
repeats.update(freq.keys())
st.toast(f"{count} sequences processed.")
return repeats, sequence_data
def create_excel(sequences_data, repeats, filenames):
output = BytesIO()
workbook = xlsxwriter.Workbook(output, {'in_memory': True})
for file_index, file_data in enumerate(sequences_data):
filename = filenames[file_index]
worksheet = workbook.add_worksheet(filename[:31])
worksheet.write(0, 0, "Entry")
worksheet.write(0, 1, "Protein Name")
col = 2
for repeat in sorted(repeats):
worksheet.write(0, col, repeat)
col += 1
row = 1
for entry_id, protein_name, freq in file_data:
worksheet.write(row, 0, entry_id)
worksheet.write(row, 1, protein_name)
col = 2
for repeat in sorted(repeats):
worksheet.write(row, col, freq.get(repeat, 0))
col += 1
row += 1
workbook.close()
output.seek(0)
return output
# Streamlit UI
st.set_page_config(page_title="Protein Tool", layout="wide")
st.title("𧬠Protein Analysis Toolkit")
app_choice = st.radio("Choose an option", ["π Protein Repeat Finder", "π Protein Comparator", "π§ͺ Amino Acid Percentage Analyzer"])
if app_choice == "π Protein Repeat Finder":
analysis_type = st.radio("Select analysis type:", ["Homo", "Hetero", "Both"], index=2)
uploaded_files = st.file_uploader("Upload Excel files", accept_multiple_files=True, type=["xlsx"])
if 'all_sequences_data' not in st.session_state:
st.session_state.all_sequences_data = []
st.session_state.all_repeats = set()
st.session_state.filenames = []
st.session_state.excel_file = None
if uploaded_files and st.button("Process Files"):
st.session_state.all_repeats = set()
st.session_state.all_sequences_data = []
st.session_state.filenames = []
for file in uploaded_files:
excel_data = pd.ExcelFile(file)
repeats, sequence_data = process_excel(excel_data, analysis_type)
if repeats is not None:
st.session_state.all_repeats.update(repeats)
st.session_state.all_sequences_data.append(sequence_data)
st.session_state.filenames.append(file.name)
if st.session_state.all_sequences_data:
st.toast(f"Processed {len(uploaded_files)} file(s) successfully.")
st.session_state.excel_file = create_excel(
st.session_state.all_sequences_data,
st.session_state.all_repeats,
st.session_state.filenames
)
if st.session_state.excel_file:
st.download_button(
label="Download Excel file",
data=st.session_state.excel_file,
file_name="Protein_Repeats_Analysis.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
)
# Display results table and repeat cluster visualization
if st.checkbox("Show Results Table"):
rows = []
for file_index, file_data in enumerate(st.session_state.all_sequences_data):
filename = st.session_state.filenames[file_index]
for entry_id, protein_name, freq in file_data:
row = {"Filename": filename, "Entry": entry_id, "Protein Name": protein_name}
row.update({repeat: freq.get(repeat, 0) for repeat in sorted(st.session_state.all_repeats)})
rows.append(row)
result_df = pd.DataFrame(rows)
st.dataframe(result_df)
# Repeat Cluster Visualization
repeat_counts = defaultdict(int)
for seq_data in st.session_state.all_sequences_data:
for _, _, freq_dict in seq_data:
for repeat, count in freq_dict.items():
repeat_counts[repeat] += count
if repeat_counts:
sorted_repeats = sorted(repeat_counts.items(), key=lambda x: x[1], reverse=True)
top_n = st.slider("Select number of top repeats to visualize", min_value=5, max_value=50, value=20)
top_repeats = sorted_repeats[:top_n]
repeats, counts = zip(*top_repeats)
plt.figure(figsize=(12, 6))
sns.barplot(x=list(repeats), y=list(counts), palette="viridis")
plt.xticks(rotation=45, ha='right')
plt.xlabel("Repeats")
plt.ylabel("Total Frequency")
plt.title("Top Repeat Clusters Across All Sequences")
st.pyplot(plt.gcf())
else:
st.warning("No repeat data available to visualize. Please upload files first.")
elif app_choice == "π Protein Comparator":
st.write("Upload two Excel files with protein data to compare repeat frequencies.")
file1 = st.file_uploader("Upload First Excel File", type=["xlsx"], key="comp1")
file2 = st.file_uploader("Upload Second Excel File", type=["xlsx"], key="comp2")
if file1 and file2:
df1 = pd.read_excel(file1)
df2 = pd.read_excel(file2)
df1.columns = df1.columns.astype(str)
df2.columns = df2.columns.astype(str)
id_col = df1.columns[0]
name_col = df1.columns[1]
repeat_columns = df1.columns[2:]
diff_data = []
for i in range(min(len(df1), len(df2))):
row1 = df1.iloc[i]
row2 = df2.iloc[i]
diff_row = {"Entry": row1[id_col], "Protein Name": row1[name_col]}
for repeat in repeat_columns:
val1 = row1.get(repeat, 0)
val2 = row2.get(repeat, 0)
change = ((val2 - val1) / val1 * 100) if val1 != 0 else (100 if val2 > 0 else 0)
diff_row[repeat] = change
diff_data.append(diff_row)
result_df = pd.DataFrame(diff_data)
percent_cols = result_df.select_dtypes(include='number').columns
st.dataframe(result_df.style.format({col: "{:.2f}%" for col in percent_cols}))
def to_excel_with_colors(df):
output = BytesIO()
workbook = xlsxwriter.Workbook(output, {'in_memory': True})
worksheet = workbook.add_worksheet('Comparison')
green_format = workbook.add_format({'font_color': 'green'})
red_format = workbook.add_format({'font_color': 'red'})
header_format = workbook.add_format({'bold': True, 'bg_color': '#D7E4BC'})
for col_num, col_name in enumerate(df.columns):
worksheet.write(0, col_num, col_name, header_format)
for row_num, row in enumerate(df.itertuples(index=False), start=1):
for col_num, value in enumerate(row):
if col_num < 2:
worksheet.write(row_num, col_num, value)
else:
fmt = green_format if value > 0 else red_format if value < 0 else None
worksheet.write(row_num, col_num, f"{value:.2f}%", fmt)
workbook.close()
output.seek(0)
return output
excel_file = to_excel_with_colors(result_df)
st.download_button(
label="Download Colored Comparison Excel",
data=excel_file,
file_name="comparison_result_colored.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
)
elif app_choice == "π§ͺ Amino Acid Percentage Analyzer":
import matplotlib.pyplot as plt # Needed for pie chart
AMINO_ACIDS = set("ACDEFGHIKLMNPQRSTVWY")
uploaded_file = st.file_uploader("Upload Excel file (with Entry, Protein Name, Sequence)", type=["xlsx"])
if uploaded_file and st.button("Analyze File"):
df = pd.read_excel(uploaded_file)
if len(df.columns) < 3:
st.error("The file must have at least three columns: Entry, Protein Name, Sequence")
else:
entry_col = df.columns[0]
name_col = df.columns[1]
seq_col = df.columns[2]
from collections import Counter
all_counts = Counter()
all_length = 0
result_rows = []
for _, row in df.iterrows():
entry = str(row[entry_col])
name = str(row[name_col])
sequence = str(row[seq_col]).replace(" ", "").replace("\"", "").strip().upper()
sequence = ''.join(filter(lambda c: c in AMINO_ACIDS, sequence))
length = len(sequence)
if length == 0:
continue
count = Counter(sequence)
all_counts.update(count)
all_length += length
percentage = {aa: round(count[aa] / length * 100, 2) for aa in AMINO_ACIDS}
result_rows.append({"Entry": entry, "Protein Name": name, **percentage})
overall_percentage = {aa: round(all_counts[aa] / all_length * 100, 2) for aa in AMINO_ACIDS}
overall_row = {"Entry": "OVERALL", "Protein Name": "ALL SEQUENCES", **overall_percentage}
df_result = pd.concat([pd.DataFrame([overall_row]), pd.DataFrame(result_rows)], ignore_index=True)
st.dataframe(df_result)
# π΅ Pie Chart
st.subheader("π§ Overall Amino Acid Composition (Pie Chart)")
fig, ax = plt.subplots(figsize=(9, 9))
labels = list(overall_percentage.keys())
sizes = list(overall_percentage.values())
filtered = [(label, size) for label, size in zip(labels, sizes) if size > 0]
if filtered:
labels, sizes = zip(*filtered)
ax.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=90, counterclock=False)
ax.axis('equal')
st.pyplot(fig)
else:
st.info("No valid amino acids found to display in pie chart.")
# Excel Export
def to_excel(df):
output = BytesIO()
workbook = xlsxwriter.Workbook(output, {'in_memory': True})
worksheet = workbook.add_worksheet("Amino Acid %")
header_format = workbook.add_format({'bold': True, 'bg_color': '#CDEDF6'})
for col_num, col_name in enumerate(df.columns):
worksheet.write(0, col_num, col_name, header_format)
for row_num, row in enumerate(df.itertuples(index=False), start=1):
for col_num, value in enumerate(row):
worksheet.write(row_num, col_num, value)
workbook.close()
output.seek(0)
return output
excel_file = to_excel(df_result)
st.download_button(
label="Download Excel Report",
data=excel_file,
file_name="amino_acid_percentage.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
)
|