File size: 16,657 Bytes
311e573
df97230
3f486f6
311e573
 
 
 
 
 
781ebc0
 
3f486f6
311e573
 
 
 
 
 
 
 
3f486f6
311e573
 
 
3f486f6
311e573
 
3f486f6
311e573
 
 
3f486f6
311e573
 
 
 
 
 
 
 
 
 
 
 
 
3f486f6
311e573
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f486f6
311e573
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f486f6
311e573
 
 
 
 
 
3f486f6
311e573
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f486f6
311e573
 
 
3f486f6
311e573
0c90078
311e573
 
 
3f486f6
311e573
 
 
 
 
cdc95c3
311e573
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdc95c3
311e573
 
 
 
781ebc0
311e573
 
d4bc620
781ebc0
311e573
 
 
 
 
 
 
 
 
 
c3138dd
781ebc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4dd55d2
0c63d43
311e573
 
 
 
 
 
 
 
 
 
cdc95c3
311e573
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f486f6
 
311e573
3f486f6
311e573
 
 
3f486f6
 
 
 
 
 
311e573
 
 
 
 
3f486f6
 
 
 
 
311e573
3f486f6
 
311e573
3f486f6
311e573
3f486f6
cdc95c3
311e573
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
import os
os.system("pip install streamlit pandas xlsxwriter openpyxl pymongo matplotlib seaborn")

import streamlit as st
import pandas as pd
import xlsxwriter
from io import BytesIO
from collections import defaultdict
import hashlib
import matplotlib.pyplot as plt
import seaborn as sns

# MongoDB Setup
try:
    from pymongo import MongoClient
    client = MongoClient("mongodb+srv://dhruvmangroliya:[email protected]/BTP_DB?retryWrites=true&w=majority")
    db = client['BTP_DB']
    results_collection = db['protein_results']
except:
    results_collection = None

# Utility Functions
def is_homo_repeat(s):
    return all(c == s[0] for c in s)

def hash_sequence(sequence):
    return hashlib.md5(sequence.encode()).hexdigest()

@st.cache_data(show_spinner=False)
def fragment_protein_sequence(sequence, max_length=1000):
    return [sequence[i:i+max_length] for i in range(0, len(sequence), max_length)]

def find_homorepeats(protein):
    n = len(protein)
    freq = defaultdict(int)
    i = 0
    while i < n:
        curr = protein[i]
        repeat = ""
        while i < n and curr == protein[i]:
            repeat += protein[i]
            i += 1
        if len(repeat) > 1:
            freq[repeat] += 1
    return freq

def find_hetero_amino_acid_repeats(sequence):
    repeat_counts = defaultdict(int)
    for length in range(2, len(sequence) + 1):
        for i in range(len(sequence) - length + 1):
            substring = sequence[i:i+length]
            repeat_counts[substring] += 1
    return {k: v for k, v in repeat_counts.items() if v > 1}

def check_boundary_repeats(fragments, final_repeats, overlap=50):
    for i in range(len(fragments) - 1):
        left_overlap = fragments[i][-overlap:]
        right_overlap = fragments[i + 1][:overlap]
        overlap_region = left_overlap + right_overlap
        boundary_repeats = find_hetero_amino_acid_repeats(overlap_region)
        for substring, count in boundary_repeats.items():
            if any(aa in left_overlap for aa in substring) and any(aa in right_overlap for aa in substring):
                final_repeats[substring] += count
    return final_repeats

def find_new_boundary_repeats(fragments, final_repeats, overlap=50):
    new_repeats = defaultdict(int)
    for i in range(len(fragments) - 1):
        left_overlap = fragments[i][-overlap:]
        right_overlap = fragments[i + 1][:overlap]
        overlap_region = left_overlap + right_overlap
        boundary_repeats = find_hetero_amino_acid_repeats(overlap_region)
        for substring, count in boundary_repeats.items():
            if any(aa in left_overlap for aa in substring) and any(aa in right_overlap for aa in substring):
                if substring not in final_repeats:
                    new_repeats[substring] += count
    return new_repeats

def get_or_process_sequence(sequence, analysis_type, overlap=50):
    if results_collection is None:
        return {}
    hash_input = f"{sequence}_{analysis_type}"
    sequence_hash = hash_sequence(hash_input)
    cached = results_collection.find_one({"_id": sequence_hash})
    if cached:
        return cached["repeats"]

    fragments = fragment_protein_sequence(sequence)
    final_repeats = defaultdict(int)

    if analysis_type == "Hetero":
        for fragment in fragments:
            fragment_repeats = find_hetero_amino_acid_repeats(fragment)
            for k, v in fragment_repeats.items():
                final_repeats[k] += v
        final_repeats = check_boundary_repeats(fragments, final_repeats, overlap)
        new_repeats = find_new_boundary_repeats(fragments, final_repeats, overlap)
        for k, v in new_repeats.items():
            final_repeats[k] += v
        final_repeats = {k: v for k, v in final_repeats.items() if not is_homo_repeat(k)}

    elif analysis_type == "Homo":
        final_repeats = find_homorepeats(sequence)

    elif analysis_type == "Both":
        hetero_repeats = defaultdict(int)
        for fragment in fragments:
            fragment_repeats = find_hetero_amino_acid_repeats(fragment)
            for k, v in fragment_repeats.items():
                hetero_repeats[k] += v
        hetero_repeats = check_boundary_repeats(fragments, hetero_repeats, overlap)
        new_repeats = find_new_boundary_repeats(fragments, hetero_repeats, overlap)
        for k, v in new_repeats.items():
            hetero_repeats[k] += v
        hetero_repeats = {k: v for k, v in hetero_repeats.items() if not is_homo_repeat(k)}
        homo_repeats = find_homorepeats(sequence)
        final_repeats = homo_repeats.copy()
        for k, v in hetero_repeats.items():
            final_repeats[k] += v

    results_collection.insert_one({
        "_id": sequence_hash,
        "sequence": sequence,
        "analysis_type": analysis_type,
        "repeats": dict(final_repeats)
    })
    return final_repeats

def process_excel(excel_data, analysis_type):
    repeats = set()
    sequence_data = []
    count = 0
    for sheet_name in excel_data.sheet_names:
        df = excel_data.parse(sheet_name)
        if len(df.columns) < 3:
            st.error(f"Error: The sheet '{sheet_name}' must have at least three columns: ID, Protein Name, Sequence")
            return None, None
        for _, row in df.iterrows():
            entry_id = str(row[0])
            protein_name = str(row[1])
            sequence = str(row[2]).replace('"', '').replace(' ', '').strip()
            if not sequence:
                continue
            count += 1
            freq = get_or_process_sequence(sequence, analysis_type)
            sequence_data.append((entry_id, protein_name, freq))
            repeats.update(freq.keys())
    st.toast(f"{count} sequences processed.")
    return repeats, sequence_data

def create_excel(sequences_data, repeats, filenames):
    output = BytesIO()
    workbook = xlsxwriter.Workbook(output, {'in_memory': True})
    for file_index, file_data in enumerate(sequences_data):
        filename = filenames[file_index]
        worksheet = workbook.add_worksheet(filename[:31])
        worksheet.write(0, 0, "Entry")
        worksheet.write(0, 1, "Protein Name")
        col = 2
        for repeat in sorted(repeats):
            worksheet.write(0, col, repeat)
            col += 1
        row = 1
        for entry_id, protein_name, freq in file_data:
            worksheet.write(row, 0, entry_id)
            worksheet.write(row, 1, protein_name)
            col = 2
            for repeat in sorted(repeats):
                worksheet.write(row, col, freq.get(repeat, 0))
                col += 1
            row += 1
    workbook.close()
    output.seek(0)
    return output

# Streamlit UI
st.set_page_config(page_title="Protein Tool", layout="wide")
st.title("🧬 Protein Analysis Toolkit")

app_choice = st.radio("Choose an option", ["πŸ” Protein Repeat Finder", "πŸ“Š Protein Comparator", "πŸ§ͺ Amino Acid Percentage Analyzer"])

if app_choice == "πŸ” Protein Repeat Finder":
    analysis_type = st.radio("Select analysis type:", ["Homo", "Hetero", "Both"], index=2)
    uploaded_files = st.file_uploader("Upload Excel files", accept_multiple_files=True, type=["xlsx"])

    if 'all_sequences_data' not in st.session_state:
        st.session_state.all_sequences_data = []
        st.session_state.all_repeats = set()
        st.session_state.filenames = []
        st.session_state.excel_file = None

    if uploaded_files and st.button("Process Files"):
        st.session_state.all_repeats = set()
        st.session_state.all_sequences_data = []
        st.session_state.filenames = []
        for file in uploaded_files:
            excel_data = pd.ExcelFile(file)
            repeats, sequence_data = process_excel(excel_data, analysis_type)
            if repeats is not None:
                st.session_state.all_repeats.update(repeats)
                st.session_state.all_sequences_data.append(sequence_data)
                st.session_state.filenames.append(file.name)
        if st.session_state.all_sequences_data:
            st.toast(f"Processed {len(uploaded_files)} file(s) successfully.")
            st.session_state.excel_file = create_excel(
                st.session_state.all_sequences_data,
                st.session_state.all_repeats,
                st.session_state.filenames
            )

    if st.session_state.excel_file:
        st.download_button(
            label="Download Excel file",
            data=st.session_state.excel_file,
            file_name="Protein_Repeats_Analysis.xlsx",
            mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
        )

    # Display results table and repeat cluster visualization
    if st.checkbox("Show Results Table"):
        rows = []
        for file_index, file_data in enumerate(st.session_state.all_sequences_data):
            filename = st.session_state.filenames[file_index]
            for entry_id, protein_name, freq in file_data:
                row = {"Filename": filename, "Entry": entry_id, "Protein Name": protein_name}
                row.update({repeat: freq.get(repeat, 0) for repeat in sorted(st.session_state.all_repeats)})
                rows.append(row)
        result_df = pd.DataFrame(rows)
        st.dataframe(result_df)

        # Repeat Cluster Visualization
        repeat_counts = defaultdict(int)
        for seq_data in st.session_state.all_sequences_data:
            for _, _, freq_dict in seq_data:
                for repeat, count in freq_dict.items():
                    repeat_counts[repeat] += count

        if repeat_counts:
            sorted_repeats = sorted(repeat_counts.items(), key=lambda x: x[1], reverse=True)
            top_n = st.slider("Select number of top repeats to visualize", min_value=5, max_value=50, value=20)
            top_repeats = sorted_repeats[:top_n]
            repeats, counts = zip(*top_repeats)

            plt.figure(figsize=(12, 6))
            sns.barplot(x=list(repeats), y=list(counts), palette="viridis")
            plt.xticks(rotation=45, ha='right')
            plt.xlabel("Repeats")
            plt.ylabel("Total Frequency")
            plt.title("Top Repeat Clusters Across All Sequences")
            st.pyplot(plt.gcf())
        else:
            st.warning("No repeat data available to visualize. Please upload files first.")



elif app_choice == "πŸ“Š Protein Comparator":
    st.write("Upload two Excel files with protein data to compare repeat frequencies.")

    file1 = st.file_uploader("Upload First Excel File", type=["xlsx"], key="comp1")
    file2 = st.file_uploader("Upload Second Excel File", type=["xlsx"], key="comp2")

    if file1 and file2:
        df1 = pd.read_excel(file1)
        df2 = pd.read_excel(file2)

        df1.columns = df1.columns.astype(str)
        df2.columns = df2.columns.astype(str)

        id_col = df1.columns[0]
        name_col = df1.columns[1]
        repeat_columns = df1.columns[2:]

        diff_data = []
        for i in range(min(len(df1), len(df2))):
            row1 = df1.iloc[i]
            row2 = df2.iloc[i]
            diff_row = {"Entry": row1[id_col], "Protein Name": row1[name_col]}
            for repeat in repeat_columns:
                val1 = row1.get(repeat, 0)
                val2 = row2.get(repeat, 0)
                change = ((val2 - val1) / val1 * 100) if val1 != 0 else (100 if val2 > 0 else 0)
                diff_row[repeat] = change
            diff_data.append(diff_row)

        result_df = pd.DataFrame(diff_data)
        percent_cols = result_df.select_dtypes(include='number').columns
        st.dataframe(result_df.style.format({col: "{:.2f}%" for col in percent_cols}))

        def to_excel_with_colors(df):
            output = BytesIO()
            workbook = xlsxwriter.Workbook(output, {'in_memory': True})
            worksheet = workbook.add_worksheet('Comparison')

            green_format = workbook.add_format({'font_color': 'green'})
            red_format = workbook.add_format({'font_color': 'red'})
            header_format = workbook.add_format({'bold': True, 'bg_color': '#D7E4BC'})

            for col_num, col_name in enumerate(df.columns):
                worksheet.write(0, col_num, col_name, header_format)

            for row_num, row in enumerate(df.itertuples(index=False), start=1):
                for col_num, value in enumerate(row):
                    if col_num < 2:
                        worksheet.write(row_num, col_num, value)
                    else:
                        fmt = green_format if value > 0 else red_format if value < 0 else None
                        worksheet.write(row_num, col_num, f"{value:.2f}%", fmt)

            workbook.close()
            output.seek(0)
            return output

        excel_file = to_excel_with_colors(result_df)

        st.download_button(
            label="Download Colored Comparison Excel",
            data=excel_file,
            file_name="comparison_result_colored.xlsx",
            mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
        )

elif app_choice == "πŸ§ͺ Amino Acid Percentage Analyzer":
    import matplotlib.pyplot as plt  # Needed for pie chart

    AMINO_ACIDS = set("ACDEFGHIKLMNPQRSTVWY")

    uploaded_file = st.file_uploader("Upload Excel file (with Entry, Protein Name, Sequence)", type=["xlsx"])

    if uploaded_file and st.button("Analyze File"):
        df = pd.read_excel(uploaded_file)

        if len(df.columns) < 3:
            st.error("The file must have at least three columns: Entry, Protein Name, Sequence")
        else:
            entry_col = df.columns[0]
            name_col = df.columns[1]
            seq_col = df.columns[2]

            from collections import Counter
            all_counts = Counter()
            all_length = 0
            result_rows = []

            for _, row in df.iterrows():
                entry = str(row[entry_col])
                name = str(row[name_col])
                sequence = str(row[seq_col]).replace(" ", "").replace("\"", "").strip().upper()
                sequence = ''.join(filter(lambda c: c in AMINO_ACIDS, sequence))
                length = len(sequence)

                if length == 0:
                    continue

                count = Counter(sequence)
                all_counts.update(count)
                all_length += length
                percentage = {aa: round(count[aa] / length * 100, 2) for aa in AMINO_ACIDS}
                result_rows.append({"Entry": entry, "Protein Name": name, **percentage})

            overall_percentage = {aa: round(all_counts[aa] / all_length * 100, 2) for aa in AMINO_ACIDS}
            overall_row = {"Entry": "OVERALL", "Protein Name": "ALL SEQUENCES", **overall_percentage}
            df_result = pd.concat([pd.DataFrame([overall_row]), pd.DataFrame(result_rows)], ignore_index=True)

            st.dataframe(df_result)

            # πŸ”΅ Pie Chart
            st.subheader("🧁 Overall Amino Acid Composition (Pie Chart)")
            fig, ax = plt.subplots(figsize=(9, 9))
            labels = list(overall_percentage.keys())
            sizes = list(overall_percentage.values())
            filtered = [(label, size) for label, size in zip(labels, sizes) if size > 0]

            if filtered:
                labels, sizes = zip(*filtered)
                ax.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=90, counterclock=False)
                ax.axis('equal')
                st.pyplot(fig)
            else:
                st.info("No valid amino acids found to display in pie chart.")

            # Excel Export
            def to_excel(df):
                output = BytesIO()
                workbook = xlsxwriter.Workbook(output, {'in_memory': True})
                worksheet = workbook.add_worksheet("Amino Acid %")
                header_format = workbook.add_format({'bold': True, 'bg_color': '#CDEDF6'})
                for col_num, col_name in enumerate(df.columns):
                    worksheet.write(0, col_num, col_name, header_format)
                for row_num, row in enumerate(df.itertuples(index=False), start=1):
                    for col_num, value in enumerate(row):
                        worksheet.write(row_num, col_num, value)
                workbook.close()
                output.seek(0)
                return output

            excel_file = to_excel(df_result)

            st.download_button(
                label="Download Excel Report",
                data=excel_file,
                file_name="amino_acid_percentage.xlsx",
                mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
            )